Application of 1612-65-3, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1612-65-3, 2-Methyl-1,2,3,4-tetrahydroisoquinoline, introducing its new discovery.
Time-resolved fluorescence spectra of a bichromophoric molecule, 2-methyl-1,2,3,4-tetrahydroisoquinoline in various media
Time-resolved fluorescence spectra of a title molecule (with benzene and aliphatic amine parts) in various media, after excitation by several lasers were observed to complement the previous work by conventional spectroscopy [N. Kanamaru, J. Tanaka, J. Phys. Chem. 95 (1991) 6441]. Though complex with many new features, the results were roughly consistent with the previous ones. The significant conclusions are as follows: (1) The emission to be ascribed to the amine (N) part, with more than one component (of nN and aN types) is observed not only for the acetonitrile solution (as previously reported) but also for all the other media. (2) Contrary to the case of a nonpolar hexane solution, both of N fluorescences in the other media reveal unusually long-lived decay components. This can be interpreted by assuming the so-called charge-transfer-to-solvent (CTTS) state that is nonfluorescent and lies just below the fluorescent state. (3) This observation in the protic media can also be taken as another evidence of the peculiar hydrogen bonding between this amine and the protic solvent molecules [N. Kanamaru, J. Tanaka, J. Phys. Chem. 95 (1991) 6441]. (4) Thus, the unexpectedly large quantum yields of N fluorescences in the polar media are now interpreted as arising due to the slow S1N?(CTTS)?S0 internal conversions.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 1612-65-3. In my other articles, you can also check out more blogs about 1612-65-3
Reference£º
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem