One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, Computed Properties of C15H19NO4, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 166591-85-1, Name is 2-(tert-Butoxycarbonyl)-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid, molecular formula is C15H19NO4
Improved catalysts for the palladium-catalyzed synthesis of oxindoles by amide alpha-arylation. Rate acceleration, use of aryl chloride substrates, and a new carbene ligand for asymmetric transformations
Catalysts comprised Pd(OAc)2 and either PCy3 or sterically hindered N-heterocyclic carbene ligands provide fast rates for a palladium-catalyzed synthesis of oxindoles by amide alpha-arylation. This catalyst system allowed for room-temperature reactions in some cases and reactions of aryl chlorides at 70 C. Most important, reactions occurred in high yields under mild conditions to form the quaternary carbon in alpha,alpha-disubstituted oxindoles. The combined inter- and intramolecular reaction afforded an efficient synthetic method for formation of alpha-aryloxindole derivatives. Surprisingly, catalysts containing tert-butylphosphine ligands, which have been most reactive for ketone arylations, were less active than those containing PCy3. Use of new, optically active heterocyclic carbene ligands gave substantial enantioselectivity in formation of an alpha,alpha-disubstituted oxindole. In contrast, a variety of optically active phosphine ligands that were tested gave poor enantioselectivity. Mechanistic studies showed that the reaction involves rate-limiting oxidative addition of aryl halide. Base-induced formation of and reductive elimination from an arylpalladium enolate intermediate were both faster than oxidative addition. Deprotonation of the tethered amide appeared to be faster than reductive elimination of the resulting palladium enolate to form the oxindole product.
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. Computed Properties of C15H19NO4, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 166591-85-1, in my other articles.
Reference£º
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem