Why Are Children Getting Addicted To 2-Phenyl-1,2,3,4-tetrahydroisoquinoline

If you are interested in 3340-78-1, you can contact me at any time and look forward to more communication. Product Details of 3340-78-1

New Advances in Chemical Research, May 2021.Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. Product Details of 3340-78-1, At least one of the reactants interacts with the solid surface in a physical process called adsorption in such a way. 3340-78-1, name is 2-Phenyl-1,2,3,4-tetrahydroisoquinoline. In an article,Which mentioned a new discovery about 3340-78-1

Within the last couple of years, the photocatalytic, oxidative C-C coupling has grown to a well-established methodology, especially for the modification of aryl-substituted tetrahydroisoquinoline derivatives. However, until now, this reaction is mainly restricted to the usage of strong nucleophiles like nitroalkanes, cyanides, enamines, phosphonates and malonates. Within this publication we present an extension of such a method towards the application of weaker nucleophiles, namely allylstannanes, allylsilanes and allylboranes. Therefore, a very simple protocol was invented, using heterogeneous mesoporous graphitic carbon nitride (mpg-C3N4) as catalyst and air as oxidizing agent, leading to high yields for a broad range of substrates.

If you are interested in 3340-78-1, you can contact me at any time and look forward to more communication. Product Details of 3340-78-1

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem