The important role of 2-Phenyl-1,2,3,4-tetrahydroisoquinoline

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 3340-78-1

Research speed reading in 2021. Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. An article , which mentions Electric Literature of 3340-78-1, molecular formula is C15H15N. The compound – 2-Phenyl-1,2,3,4-tetrahydroisoquinoline played an important role in people’s production and life., Electric Literature of 3340-78-1

A controllable mono- and di-multifluoroarylation of acyclic and cyclic N-aryl amines with aryl fluorides by photocatalyzed dual C(sp3)?H/C(sp2)?F functionalization has been developed, providing new access to a wide array of valuable alpha-fluoroarylated amines. In addition, the one-pot consecutive hetero-di-multifluoroarylation of N-aryl pyrrolidines and N,N-dimethylanilines was achieved with high to excellent diastereoselectivity. This new defluorinative C(sp3)?C(sp2) coupling is distinguished by a broad scope, good regioselectivity, and mild conditions as well as gram-scale and late-stage applicability, and thus constitutes a significant advance in the arylation of unactivated C(sp3)?H bonds with aryl fluorides.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 3340-78-1

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem