New Advances in Chemical Research in 2021. In homogeneous catalysis, the catalyst is in the same phase as the reactant. The number of collisions between reactants and catalyst is at a maximum.In a patent, 3340-78-1, name is 2-Phenyl-1,2,3,4-tetrahydroisoquinoline, introducing its new discovery. Application In Synthesis of 2-Phenyl-1,2,3,4-tetrahydroisoquinoline
A comparative mechanistic study of Cu-catalyzed oxidative coupling reactions of N-phenyltetrahydroisoquinoline with different nucleophiles was conducted. Two previously reported combinations of catalyst and oxidant were studied, CuCl22H2O/O2 and CuBr/tert-butyl hydroperoxide (TBHP). On the basis of a synthetic study with different nucleophiles, the electrophilicity of the intermediate iminium ion was estimated and differences between the two methods were revealed. The key intermediate in the aerobic method is shown to be an iminium ion, formed through oxidation by copper(II), which can react with any nucleophile of sufficient reactivity. The role of oxygen is the reoxidation of the reduced catalyst. In the CuBr/TBHP system, an alpha-amino peroxide is proposed as a true intermediate within the catalytic cycle, formed from the amine and TBHP by a Cu-catalyzed radical reaction pathway and acting as a precursor to the iminium ion intermediate.
We’ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 3340-78-1, and how the biochemistry of the body works.Application In Synthesis of 2-Phenyl-1,2,3,4-tetrahydroisoquinoline
Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem