Why do aromatic interactions matter of compound: 1452-77-3

Compound(1452-77-3)Application of 1452-77-3 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Picolinamide), if you are interested, you can check out my other related articles.

Application of 1452-77-3. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Highly Efficient Synthesis of Alkyl N-Arylcarbamates from CO2, Anilines, and Branched Alcohols with a Catalyst System of CeO2 and 2-Cyanopyridine. Author is Gu, Yu; Miura, Ayaka; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi.

Highly efficient synthesis of alkyl N-arylcarbamates from CO2, anilines, and alcs. using the CeO2 and 2-cyanopyridine catalyst system was substantiated by selecting branched alcs., such as 2-propanol and cyclohexanol, with minimized formation of byproducts, such as dialkyl carbonates and picolinamide. The catalyst system is operable even at low CO2 pressure (≤1 MPa), and the target carbamates were obtained with high arylamine-based yields (up to 94%). Alkyl N-phenylcarbamates were obtained from CO2, anilines, and alcs. with high yield and minimized formation of byproducts by using branched alcs.

Compound(1452-77-3)Application of 1452-77-3 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Picolinamide), if you are interested, you can check out my other related articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem