Synthetic Route of C6H6N2O. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Structure and NMR properties of the dinuclear complex di-μ-azido-κ4N1:N1-bis[(azido-κN)(pyridine-2-carboxamide-κ2N1,O)zinc(II)]. Author is Pastor Ramirez, Candida; Bernes, Sylvain; Hernandez Anzaldo, Samuel; Reyes Ortega, Yasmi.
The new diamagnetic complex, [Zn2(N3)4(C6H6N2O)2] or [Zn2(pca)2(μ1,1-N3)2(N3)2] was synthesized using pyridine-2-carboxamide (pca) and azido ligands, and characterized using various techniques: IR spectroscopy and single-crystal X-ray diffraction in the solid state, and NMR (NMR) in solution The mol. is placed on an inversion center in space group P [inline formula omitted] . The pca ligand chelates the metal center via the pyridine N atom and the carbonyl O atom. One azido ligand bridges the two symmetry-related Zn2+ cations in the end-on coordination mode, while the other independent azido anion occupies the fifth coordination site, as a terminal ligand. The resulting five-coordinate Zn centers have a coordination geometry intermediate between trigonal bipyramidal and square pyramidal. The behavior of the title complex in DMSO solution suggests that it is a suitable NMR probe for similar or isostructural complexes including other transition-metal ions. The diamagnetic nature of the complex is reflected in similar 1H and 13C NMR chem. shifts for the free ligand pca as for the Zn complex.
In some applications, this compound(1452-77-3)Synthetic Route of C6H6N2O is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.
Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem