Quality Control of Picolinamide. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Picolinamide-Based Iridium Catalysts for Aqueous Formic Acid Dehydrogenation: Increase in Electron Density of Amide N through Substituents. Author is Guo, Jian; Yin, Chengkai; Li, Maoliang; Zhong, Dulin; Zhang, Yuguan; Li, Xiaobin; Wang, Yilin; Yao, Hong; Qi, Tiangui.
Formic acid (FA) is considered to be a potential hydrogen storage material. Homogeneous catalysts are desired, which decompose aqueous FA into H2 and CO2 without addition of organic additives as they can contaminate the generated gas mixture We report a new series of Cp*Ir (Cp*=pentamethylcyclopentadienyl) catalysts featuring picolinamide-based ligands for efficient H2 generation from FA solution Among them in-situ generated catalyst from [Cp*Ir(H2O)3]SO4 and picolinohydroxamic acid (L3) achieved a high turnover frequency (TOF) of 90625 h-1 at 80 °C in 0.9 M FA solution and a turnover number (TON) of 120520 at 80 °C in a recycle experiment The substituent effect of amide N atom was discussed and a plausible mechanism was proposed based on the exptl. results.
From this literature《Picolinamide-Based Iridium Catalysts for Aqueous Formic Acid Dehydrogenation: Increase in Electron Density of Amide N through Substituents》,we know some information about this compound(1452-77-3)Quality Control of Picolinamide, but this is not all information, there are many literatures related to this compound(1452-77-3).
Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem