Extended knowledge of 1452-77-3

From this literature《Aerobic Activation of C-H Bond in Amines Over a Nanorod Manganese Oxide Catalyst》,we know some information about this compound(1452-77-3)Electric Literature of C6H6N2O, but this is not all information, there are many literatures related to this compound(1452-77-3).

Electric Literature of C6H6N2O. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Aerobic Activation of C-H Bond in Amines Over a Nanorod Manganese Oxide Catalyst. Author is Wang, Hai; Wang, Liang; Wang, Sai; Dong, Xue; Zhang, Jian; Xiao, Feng-Shou.

The development of heterogeneous catalysts for the synthesis of pharmaceutically relevant compounds is always important for chem. research. Here, we report a selective aerobic oxidation of aromatic and aliphatic amines to corresponding amides over a nanorod manganese oxide (NR-MnOx) catalyst. The kinetic studies reveal that the NR-MnOx catalyzed amine-to-amide reaction proceeds the oxidative dehydrogenation of the amines into nitriles, followed by hydrolysis of nitrile into amides. The NR-MnOx exhibits fast kinetics and high selectivities in these steps, as well as hinders the byproduct formation. More importantly, the NR-MnOx catalyst is stable and reusable in the continuous recycle tests with water as a sole byproduct, exhibiting superior sustainability and significant advancement to outperform the traditional amide production route in acidic or basic media with toxic byproducts.

From this literature《Aerobic Activation of C-H Bond in Amines Over a Nanorod Manganese Oxide Catalyst》,we know some information about this compound(1452-77-3)Electric Literature of C6H6N2O, but this is not all information, there are many literatures related to this compound(1452-77-3).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem