Application of 15227-42-6. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Luminescence properties of some platinum(II) complexes. Counter-ion and molecular geometry effects. Author is Diomedi Camassei, F.; Ancarani-Rossiello, L.; Castelli, F..
Reflectance and luminescence spectra, and emission lifetimes of 14 charged and neutral Pt(II) crystalline complexes are reported. The lifetimes (in the range of some tens of μsec) indicate that the emissions are due to a spin-forbidden process. On the basis of spectral correlations, the phosphorescence is tentatively identified as due to the lowest d-d ligand field transition when the bonding of the ligand is essentially σ in character, and to a π* → d charge-transfer transition for those complexes in which the ligands themselves have π orbital systems. Both the radiative (kr) and nonradiative (kn) rate constants are sensitive to changes in mol. geometry (cis,trans isomers) and counter-ions. By assuming unitary efficiency for the intersystem crossing to the emitting state, the counter-ion appears to predominantly affect kn through vibrational coupling of the chromophore with the lattice. For the cis forms, both kr and kn are affected in a complex manner, with metal-metal interactions playing an important role. For the trans forms, however, the constancy of the quantum yield with respect to temperature suggests that kn is negligible in comparison to kr, and therefore the trans chromophores behave as isolated systems within the crystalline lattice.
This literature about this compound(15227-42-6)Application of 15227-42-6has given us a lot of inspiration, and I hope that the research on this compound(cis-Dichlorobis(pyridine)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.
Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem