Something interesting about 1452-77-3

After consulting a lot of data, we found that this compound(1452-77-3)Related Products of 1452-77-3 can be used in many types of reactions. And in most cases, this compound has more advantages.

Related Products of 1452-77-3. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Effect of nicotinamide on the flagellar detachment and regeneration of Euglena. Author is Okuwa-Hayashi, Hirotaka; Inui, Hiroshi; Inagaki, Junko; Nakazawa, Masami; Ebara, Shuhei; Enomoto, Toshiki; Sakamoto, Tatsuji; Nakano, Yoshihisa.

Euglena is capable of growth under various variety of nutritional and environmental conditions. Euglena is possible to grow under diverse culture conditions with and without light illumination, namely under both heterotrophic and photoautotrophic conditions. Euglena can synthesize most of vitamins and biofactors except for the exception, such as vitamin B1 and B12. In the present study, the effects of nicotinamide and its analogs on the flagellar detachment of Euglena were investigated using nicotinamide and the 12 kinds of structural analogs (nicotinic acid, pyrazine, pyrazine-2-carboxylic acid, 2-picolinamide, methylnicotinate, N-methylnicotinamide, 3-methylpyridine, pyridine-3-sulfate, pyridoxine, pyridoxal, pyridoxamine, isonicotinic acid hydrazide), NAD+, and NADP+. Among these compounds, nicotinamide, nicotinic acid, pyrazine-2-carboxylic acid, methylnicotinate, 2-picolinamide, and N-methylnicotinamide caused of the flagellar detachment and then cell division stopped. It was also found that nicotinamide added to Euglena cell was dilute with water and culture medium, cell division occurred and then flagella were regenerated after 24h, resulting in onset euglenoid exercise. The electrophoresis of the detached flagellar proteins reveled that the protein resembled tublin (55 kDa) and paraflagella rod 2 (69 KDa).

After consulting a lot of data, we found that this compound(1452-77-3)Related Products of 1452-77-3 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem