Peter, Antal’s team published research in Journal of Chromatography A in 1998 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.COA of Formula: C10H11NO3 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Peter, Antal; Torok, Gabriella; Armstrong, Daniel W. published an article on January 16 ,1998. The article was titled 《High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase》, and you may find the article in Journal of Chromatography A.COA of Formula: C10H11NO3 The information in the text is summarized as follows:

A glycopeptide antibiotic, teicoplanin, was used as chiral stationary phase for the HPLC separation of enantiomers of >30 unnatural amino acids, such as phenylalanine and tyrosine analogs and analogs containing 1,2,3,4-tetrahydroisoquinoline, tetraline, 1,2,3,4-tetrahydro-2-carboline, cyclopentane, cyclohexane, cyclohexene, bicyclo[2.2.1]heptane or heptene skeletons. Excellent resolutions were achieved for most of the studied compounds by using a hydro-organic mobile-phase system. The effects of organic modifier content, temperature and flow-rate on the resolution were studied and the conditions of separation were optimized. In the experiment, the researchers used (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1COA of Formula: C10H11NO3)

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.COA of Formula: C10H11NO3 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem