Grunewald, Gary L. et al. published their research in Bioorganic & Medicinal Chemistry in 2008 | CAS: 207451-81-8

7-Methyl-1,2,3,4-tetrahydroisoquinoline (cas: 207451-81-8) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline, as a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids. Because of the high biological relevance of compounds possessing the 1,2,3,4-tetrahydroisoquinoline framework, a large number of synthetic approaches towards the creation of an isoquinoline or 1,2,3,4-tetrahydroisoquinoline core are presently known. However, synthetic routes to tetrahydroisoquinoline derivatives containing fluorine atom(s) in their structure are not particularly abundant.Electric Literature of C10H13N

Synthesis of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines and comparison with their isosteric 1,2,3,4-tetrahydroisoquinolines as inhibitors of phenylethanolamine N-methyltransferase was written by Grunewald, Gary L.;Seim, Mitchell R.;Bhat, Seema R.;Wilson, Marc E.;Criscione, Kevin R.. And the article was included in Bioorganic & Medicinal Chemistry in 2008.Electric Literature of C10H13N This article mentions the following:

A series of substituted 4,5,6,7-tetrahydrothieno[3,2-c]pyridines (THTPs) was synthesized and evaluated for their human phenylethanolamine N-methyltransferase (hPNMT) inhibitory potency and affinity for the α2-adrenoceptor. The THTP nucleus was suggested as an isosteric replacement for the 1,2,3,4-tetrahydroisoquinoline (THIQ) ring system on the basis that 3-thienylmethylamine was more potent as an inhibitor of hPNMT and more selective toward the α2-adrenoceptor than benzylamine. Although the isosterism was confirmed, with similar influence of functional groups and chirality in both systems on hPNMT inhibitory potency and selectivity, the THTP compounds proved, in general, to be less potent as inhibitors of hPNMT than their THIQ counterparts, with the drop in potency being primarily attributed to the electronic properties of the thiophene ring. A hypothesis for the reduced hPNMT inhibitory potency of these compounds has been formed on the basis of mol. modeling and docking studies using the x-ray crystal structures of hPNMT cocrystd. with THIQ-type inhibitors and S-adenosyl-L-homocysteine as a template. In the experiment, the researchers used many compounds, for example, 7-Methyl-1,2,3,4-tetrahydroisoquinoline (cas: 207451-81-8Electric Literature of C10H13N).

7-Methyl-1,2,3,4-tetrahydroisoquinoline (cas: 207451-81-8) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline, as a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids. Because of the high biological relevance of compounds possessing the 1,2,3,4-tetrahydroisoquinoline framework, a large number of synthetic approaches towards the creation of an isoquinoline or 1,2,3,4-tetrahydroisoquinoline core are presently known. However, synthetic routes to tetrahydroisoquinoline derivatives containing fluorine atom(s) in their structure are not particularly abundant.Electric Literature of C10H13N

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem