Never Underestimate The Influence Of 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1745-07-9, help many people in the next few years.category: tetrahydroisoquinoline

Chemical Research Letters, May 2021. Research speed reading in 2021. category: tetrahydroisoquinoline, The transformation of simple hydrocarbons into more complex and valuable products via catalytic C–H bond functionalisation has revolutionised modern synthetic chemistry. 1745-07-9, Name is 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline, molecular formula is C11H15NO2. In a Article,once mentioned of 1745-07-9

Benzylisoquinoline alkaloids (BIAs) are a structurally diverse class of plant-specialized metabolites that have been particularly well-studied in the order Ranunculales. The N-methyltransferases (NMTs) in BIA biosynthesis can be divided into three groups according to substrate specificity and amino acid sequence. Here, we report the first crystal structures of enzyme complexes from the tetrahydroprotoberberine NMT (TNMT) subclass, specifically for GfTNMT from the yellow horned poppy (Glaucium flavum). GfTNMT was co-crystallized with the cofactor S-adenosyl-L-methionine (dmin = 1.6 A ), the product S-adenosyl-L-homocysteine (dmin = 1.8 A ), or in complex with S-adenosyl-L-homocysteine and (S)-cis-N-methylstylopine (dmin = 1.8 A ). These structures reveal for the first time how a mostly hydrophobic L-shaped substrate recognition pocket selects for the (S)-cis configuration of the two central six-membered rings in protoberberine BIA compounds. Mutagenesis studies confirm and functionally define the roles of several highly- conserved residues within and near the GfTNMT-active site. The substrate specificity of TNMT enzymes appears to arise from the arrangement of subgroup-specific stereospecific recognition elements relative to catalytic elements that are more widely-conserved among all BIA NMTs. The binding mode of protoberberine compounds to GfTNMTappears to be similar to coclaurine NMT, with the isoquinoline rings buried deepest in the binding pocket. This binding mode differs from that of pavine NMT, in which the benzyl ring is bound more deeply than the isoquinoline rings. The insights into substrate recognition and catalysis provided here form a sound basis for the rational engineering ofNMTenzymes for chemoenzymatic synthesis and metabolic engineering.

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1745-07-9, help many people in the next few years.category: tetrahydroisoquinoline

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem