Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 15227-42-6, is researched, Molecular C10H10Cl2N2Pt, about Multinuclear NMR study and crystal structures of complexes of the types cis- and trans-Pt(Ypy)2X2, where Ypy = pyridine derivative and X = Cl and I, the main research direction is crystal structure platinum picoline pyridine halo; platinum pyridine picoline lutidine halo preparation structure; isomerization cis trans platinum pyridine halo; NMR platinum 195 pyridine halo complex; trans effect platinum pyridine halo complex.Application of 15227-42-6.
Cis- and trans-Pt(Ypy)2X2, where Ypy is a Me derivative of pyridine and X = Cl or I, were studied by spectroscopic methods, especially by multinuclear NMR spectroscopy. In 195Pt NMR, the cis-dichloro compounds were observed between -1998 and -2021 ppm in CDCl3, while the trans compounds were found at slightly lower field, between -1948 and -1973 ppm. The diiodo species were observed at much higher field, between -3199 and -3288 ppm for the cis isomers and between -3122 and -3264 ppm for the trans isomers. In 1H NMR, the 3J(195Pt-1H) coupling constants are larger for the cis compounds (∼42 ppm) than for the trans isomers (∼33 ppm). In 13C NMR, the values of 3J(195Pt-13C) also are larger for the cis complexes. There seems to be a slight dependence of the pKa values of the protonated ligands on the δ(Pt) chem. shifts. The presence of π-bonding between Pt and the pyridine ligands do not seem very important. The crystal structures of three dichloro and five diiodo complexes were determined, in an attempt to obtain information on the trans influence of the three ligands. The iodo ligand has the greatest trans influence. Chloro and pyridine ligands seem to have similar trans influence, although, the chloro ligand seems to have a slightly larger influence than pyridine derivatives One structure, trans-Pt(2-pic)2I2, showed a syn conformation of the two 2-picoline ligands.
Although many compounds look similar to this compound(15227-42-6)Application of 15227-42-6, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.
Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem