Synthetic Route of C10H11NO3On March 13, 2017, Barnash, Kimberly D.; The, Juliana; Norris-Drouin, Jacqueline L.; Cholensky, Stephanie H.; Worley, Beau M.; Li, Fengling; Stuckey, Jacob I.; Brown, Peter J.; Vedadi, Masoud; Arrowsmith, Cheryl H.; Frye, Stephen V.; James, Lindsey I. published an article in ACS Combinatorial Science. The article was 《Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2》. The article mentions the following:
The function of EED within Polycomb repressive complex 2 (PRC2) is mediated by a complex network of protein-protein interactions. Allosteric activation of PRC2 by binding of methylated proteins to EED’s aromatic cage is essential for full catalytic activity, but details of this regulation are not fully understood. EED’s recognition of the product of PRC2 activity, histone H3 lysine 27 trimethylation (H3K27me3), stimulates PRC2 methyltransferase activity at adjacent nucleosomes leading to H3K27me3 propagation and, ultimately, gene repression. By coupling combinatorial chem. and structure-based design, we optimized a low affinity methylated Jarid2 peptide to a smaller, more potent peptidomimetic ligand (Kd = 1.14 ± 0.14 μM) of the aromatic cage of EED. Our strategy illustrates the effectiveness of applying combinatorial chem. to achieve both ligand potency and property optimization. Furthermore, the resulting ligands, UNC5114 and UNC5115, demonstrate that targeted disruption of EED’s reader function can lead to allosteric inhibition of PRC2 catalytic activity. In the experimental materials used by the author, we found (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1Synthetic Route of C10H11NO3)
(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Synthetic Route of C10H11NO3 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.
Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem