Zhang, Hang et al. published their research in Biochemical Pharmacology (Amsterdam, Netherlands) in 2022 | CAS: 2328-12-3

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 2328-12-3) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline, as a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids. Because of the high biological relevance of compounds possessing the 1,2,3,4-tetrahydroisoquinoline framework, a large number of synthetic approaches towards the creation of an isoquinoline or 1,2,3,4-tetrahydroisoquinoline core are presently known. However, synthetic routes to tetrahydroisoquinoline derivatives containing fluorine atom(s) in their structure are not particularly abundant.Application In Synthesis of 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride

The effect and mechanistic study of encequidar on reversing the resistance of SW620/AD300 cells to doxorubicin was written by Zhang, Hang;Bian, Shaopan;Xu, Zhihao;Gao, Ming;Wang, Han;Zhang, Junwei;Zhang, Mingkun;Ke, Yu;Wang, Weijia;Chen, Zhe-Sheng;Xu, Haiwei. And the article was included in Biochemical Pharmacology (Amsterdam, Netherlands) in 2022.Application In Synthesis of 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride This article mentions the following:

Encequidar, a gut-specific P-glycoprotein (P-gp) inhibitor, makes oral paclitaxel possible, and has been used in clin. treatment of metastatic breast cancer, however, its pharmacol. effect and mechanism of reversal of drug resistance in drug-resistant colon cancer cells SW620/AD300 are still unknown. Herein, we first synthesized encequidar and demonstrated that it could inhibit the transport activity of P-gp, reduced doxorubicin (DOX) efflux, enhanced DOX cytotoxicity and promoted tumor-apoptosis in SW620/AD300 cells. Metabolomic anal. of cell samples was performed using liquid chromatog. Q-Exactive mass spectrometer, the results of metabolite enrichment anal. and pathway anal. showed that the combination of encequidar and DOX could: i. significantly affect the citric acid cycle (TCA cycle) and reduce the energy supply required for P-gp to exert its transport activity; ii. affect the metabolism of glutathione, which is the main component of the anti-oxidative stress system, and reduce the ability of cells to resist oxidative stress; iii. increase the intracellular reactive oxygen species (ROS) production and enhance ROS-induced cell damage and lipid peroxidation, which in turn restore the sensitivity of drug-resistant cells to DOX. In conclusion, these results provide sufficient data support for the therapeutical application of the P-gp inhibitor encequidar to reverse MDR, and are of great significance to further understand the therapeutic advantages of encequidar in anti-tumor therapy and guide clin. rational drug use. In the experiment, the researchers used many compounds, for example, 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 2328-12-3Application In Synthesis of 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride).

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 2328-12-3) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline, as a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids. Because of the high biological relevance of compounds possessing the 1,2,3,4-tetrahydroisoquinoline framework, a large number of synthetic approaches towards the creation of an isoquinoline or 1,2,3,4-tetrahydroisoquinoline core are presently known. However, synthetic routes to tetrahydroisoquinoline derivatives containing fluorine atom(s) in their structure are not particularly abundant.Application In Synthesis of 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem