The Best Chemistry compound: 1452-77-3

In addition to the literature in the link below, there is a lot of literature about this compound(Picolinamide)Quality Control of Picolinamide, illustrating the importance and wide applicability of this compound(1452-77-3).

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Journal of CO2 Utilization called Evaluating the direct CO2 to diethyl carbonate (DEC) process: Rigorous simulation, techno-economical and environmental evaluation, Author is Yu, Bor-Yih; Wu, Pei-Jhen; Tsai, Chang-Che; Lin, Shiang-Tai, which mentions a compound: 1452-77-3, SMILESS is O=C(N)C1=NC=CC=C1, Molecular C6H6N2O, Quality Control of Picolinamide.

In this work, the plant-wide process to produce di-Et carbonate (DEC) from the direct reaction of CO2 with ethanol, which uses 2-cyanopyridine (2-CP) as an in situ dehydrating agent, is proposed for the first time. Rigorous design, optimization, ability in carbon reduction, techno-economic and feasibility analyses are all performed in this work. The process consists of two sections. The first one is the main section, in which DEC is generated, along with the removal of water using 2-CP to form 2-picolinamide (2-PA). The second one is the regeneration section, where 2-CP is converted back from 2-PA and recycled. Using simulated annealing method, the optimized CO2 reduction rate in the main section is 0.237 (Ton CO2/Ton DEC generated) on an annual basis. We identify that when the regeneration section is operated with a molar ratio of mesitylene to 2-PA being less than 2.05, the overall process can be in net CO2 reduction Under the constraint of 90 % regeneration of 2-CP as reported in available literature, the produced DEC can match the current market price range under 15 % internal rate of return (IRR), if 2-CP can be obtained with a price lower than 2.56 USD/kg (corresponding to DEC price of 1.10 USD/kg and ethanol price of 0.37 USD/kg) to 6.09 USD/kg (corresponding to DEC price of 1.90 USD/kg and ethanol price of 0.56 USD/kg).

In addition to the literature in the link below, there is a lot of literature about this compound(Picolinamide)Quality Control of Picolinamide, illustrating the importance and wide applicability of this compound(1452-77-3).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Chemistry Milestones Of 1452-77-3

In addition to the literature in the link below, there is a lot of literature about this compound(Picolinamide)Recommanded Product: 1452-77-3, illustrating the importance and wide applicability of this compound(1452-77-3).

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1452-77-3, is researched, Molecular C6H6N2O, about Improving Compliance and Decreasing Drug Accumulation of Diethylstilbestrol through Cocrystallization, the main research direction is diethylstilbestrol cocrystal cocrystn.Recommanded Product: 1452-77-3.

Diethylstilbestrol (DES), a synthetic nonsteroidal estrogen, has been prescribed for advanced breast cancer and prostate cancer. However, its poor compliance, reactive metabolite toxicity and hydrophobicity-induced drug accumulation has limited its applications. In this study, we aimed to modulate its dissolution rate and reduce reactive metabolites and drug accumulation through cocrystn. Cocrystals of DES with isonicotinamide (INA), picolinamide (PIN), nicotinamide (NIA), urea (UREA), sarcosine (SAR), and flavone (FLA) were obtained. Different crystallization strategies result in cocrystal polymorphs for DES with INA and FLA. Intrinsic dissolution rate (IDR) characterizations in pH 2.0 buffer solution were conducted. Two assumptions (enhancing Cmax or prolonging Tmax) with the aim of improving compliance were put forward. On the basis of the IDR results (DES-NIA with a 1.5-fold increase in IDR and DES-2FLA-B with a 5.5-fold decrease in IDR) and the pharmacol. activities of coformers (NIA and FLA with CYPs inhibition and UGTs stimulation effects), the pharmacokinetic behaviors of these two cocrystals were further researched. The 2-fold prolongation of Tmax in the PK profile DES-2FLA-B facilitated an improvement in compliance. In addition, the higher clearance rates and the potential to reduce oxidative metabolites in DES-2FLA-B help to decrease the drug accumulation and reduce the adverse effects of DES.

In addition to the literature in the link below, there is a lot of literature about this compound(Picolinamide)Recommanded Product: 1452-77-3, illustrating the importance and wide applicability of this compound(1452-77-3).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

The origin of a common compound about 1452-77-3

There are many compounds similar to this compound(1452-77-3)Reference of Picolinamide. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference of Picolinamide. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Ethene-1,1,2,2-tetracarbonitrile and Methanol in the Methylating Reaction of Tertiary Amines to the Quaternary Ammonium Compounds of 1,1-Dicyano-2-methoxy-2-oxoethane-1-ide. Author is Sheverdov, Vladimir P.; Davydova, Vera V.; Nasakin, Oleg E.; Mar’yasov, Maksim A.; Lodochnikova, Olga A..

We discovered a new method to methylate tertiary amines such as urotropine, triethylamine, pyridine, 2-methylpyridine, 4-acetylpyridine, and isonicotinamide, to quaternary ammonium compounds, with 1,1-dicyano-2-methoxy-2-oxoethane-1-ide being the counterion. Methyl-1,3,5,7-tetraazaadamantan-1-ium 1,1-dicyano-2-methoxy-2-oxoethane-1-ide, N,N-diethyl-N-methylethanaminium 1,1-dicyano-2-methoxy-2-oxoethane-1-ide, and substituted-methylpyridinium 1,1-dicyano-2-methoxy-2-oxoethane-1-ides were synthesized. Quaternary ammonium compounds of 1,1-dicyano-2-methoxy-2-oxothane-1-ide were synthesized within a single stage by stirring methanol solutions of tertiary amines with ethene-1,1,2,2-tetracarbonitrile (ETCN) at room temperature In the reaction of ETCN with tertiary amines in methanol, processes occur that form the 1,1-dicyano-2-methoxy-2-oxoethane-1-ide fragment with simultaneous N-methylation. Crystal structures based on X-ray diffraction anal. of the obtained compounds were studied.

There are many compounds similar to this compound(1452-77-3)Reference of Picolinamide. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

New explortion of 1452-77-3

There are many compounds similar to this compound(1452-77-3)Quality Control of Picolinamide. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1452-77-3, is researched, Molecular C6H6N2O, about Half-Sandwich Iridium Complexes for the One-Pot Synthesis of Amides: Preparation, Structure, and Diverse Catalytic Activity, the main research direction is iridium half sandwich Schiff base complex preparation hydration catalyst; nitrile hydration oxime rearrangement preparation aromatic amide iridium catalyst; crystal structure iridium half sandwich Schiff base complex; mol structure iridium half sandwich Schiff base complex.Quality Control of Picolinamide.

Several types of air-stable N,O-coordinate half-sandwich iridium complexes containing Schiff base ligands with the general formula [Cp*IrClL] were synthesized in good yields. These stable iridium complexes displayed a good catalytic efficiency in amide synthesis. A variety of amides with different substituents were obtained in a one-pot procedure with excellent yields and high selectivities through the amidation of aldehydes with NH2OH·HCl and nitrile hydration under the catalysis of complexes 1-4. The excellent and diverse catalytic activity, mild conditions, broad substance scope, and environmentally friendly solvent make this system potentially applicable in industrial production Half-sandwich iridium complexes 1-4 were characterized by NMR, elemental anal., and IR techniques. Mol. structures of complexes 2 and 3 were confirmed by single-crystal X-ray anal. Half-sandwich iridium complexes were synthesized, which exhibited a high catalytic activity for amide synthesis in a one-pot procedure with excellent yields and high selectivity through aldehyde amidation or nitrile hydration. The broad substrate scope, mild reaction conditions, and high yields of the products made this catalytic system attractive in the industrial process.

There are many compounds similar to this compound(1452-77-3)Quality Control of Picolinamide. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Brief introduction of 1452-77-3

There are many compounds similar to this compound(1452-77-3)SDS of cas: 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

SDS of cas: 1452-77-3. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Florylpicoxamid, a new picolinamide fungicide with broad spectrum activity. Author is Yao, Chenglin; Meyer, Kevin G.; Gallup, Courtney; Bowling, Andrew J.; Hufnagl, Andrea; Myung, Kyung; Lutz, Jamie; Slanec, Thomas; Pence, Heather E.; Delgado, Javier; Wang, Nick X..

Following the introduction of fenpicoxamid, a natural product-based fungicide targeting the Qi site of mitochondrial cytochrome bc1 complex, a second generation fully synthetic picolinamide, florylpicoxamid, was discovered and its biol. activity and attributes were characterized. In vitro fungal growth inhibition assays and in planta glasshouse biol. activity evaluations showed florylpicoxamid was active against 21 different plant pathogenic fungi within the phyla Ascomycota and Basidiomycota. Among the pathogens evaluated, florylpicoxamid was most potent against Zymoseptoria tritici, the causal organism of wheat leaf blotch, providing 80% growth inhibition in vitro at 0.0046 mg L-1 and 80% disease control in planta at 0.03 mg L-1 when applied as a preventative treatment. Florylpicoxamid was more efficacious than epoxiconazole, fluxapyroxad, and benzovindiflupyr vs. a Z. tritici wild-type isolate when applied as curative and preventative treatments, with superior 10-day curative reachback activity. Anal. studies and in planta tests demonstrated that florylpicoxamid partitioned into plants quickly and showed good systemicity and translaminar activity on both monocot and dicot plants. No cross-resistance was observed between florylpicoxamid and strobilurin or azole fungicides. Florylpicoxamid exerts its preventative effect by preventing spore germination on the leaf surface and curative activity by arresting mycelial growth and pycnidia development in leaf tissue. With strong broad spectrum fungicidal activity, florylpicoxamid delivers an innovative solution for growers to sustain high productivity and quality of many crops, and also provides a new option for developing effective strategies for fungicide resistance management.

There are many compounds similar to this compound(1452-77-3)SDS of cas: 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some scientific research about 1452-77-3

There are many compounds similar to this compound(1452-77-3)Computed Properties of C6H6N2O. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Understanding the extraction behaviour of UO2+2 and Th4+ using novel picolinamide/N-oxo picolinamide in ionic liquid: A comparative evaluation with molecular diluent, published in 2021-06-15, which mentions a compound: 1452-77-3, Name is Picolinamide, Molecular C6H6N2O, Computed Properties of C6H6N2O.

The manuscript deals with efficient separation of hexavalent UO2+2 and tetravalent Th4+ from aqueous acidic waste solution in green way using ionic liquid with novel picolinamide (L I) and N-oxo picolinamide (L II) based ligands. A comparative evaluation was carried out to understand the extraction mechanism, kinetics, thermodn., speciation, radiolytic stability and stripping behavior of UO2+2 and Th4+ in ionic liquid vis-a-vis mol. diluent. The investigation demonstrates the predominance of cation exchange mechanism in ionic liquid and solvation mechanism in n-dodecane based systems. The slower extraction kinetics in ionic liquid was attributed to the viscosity effect. The extractive mass transfer processes were found to be spontaneous, endothermic and entropically driven in nature. The picolinamide and N-oxo picolinamide ligands were found to form inner-sphere complexes in ionic liquid as well as n-dodecane. The CO2-3 was more effective aqueous phase complexing agent to back extract UO2+2, while C2O2-4 exhibited the same for Th4+.

There are many compounds similar to this compound(1452-77-3)Computed Properties of C6H6N2O. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

A new application about 1452-77-3

There are many compounds similar to this compound(1452-77-3)Application of 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Metabotropic glutamate receptor 5 (mGlu5)-positive allosteric modulators differentially induce or potentiate desensitization of mGlu5 signaling in recombinant cells and neurons, the main research direction is metabotropic glutamate receptor 5 modulator desensitization neuron; biased modulation; context dependence; desensitization; metabotropic glutamate receptor 5; positive allosteric modulator.Application of 1452-77-3.

Allosteric modulators of metabotropic glutamate receptor 5 (mGlu5) are a promising therapeutic strategy for a number of neurol. disorders. Multiple mGlu5-pos. allosteric modulator (PAM) chemotypes have been discovered that act as either pure PAMs or as PAM-agonists in recombinant and native cells. While these compounds have been tested in paradigms of receptor activation, their effects on receptor regulatory processes are largely unknown. In this study, acute desensitization of mGlu5 mediated intracellular calcium mobilization by structurally diverse mGlu5 orthosteric and allosteric ligands was assessed in human embryonic kidney 293 cells and primary murine neuronal cultures from both striatum and cortex. We aimed to determine the intrinsic efficacy and modulatory capacity of diverse mGlu5 PAMs [(R)-5-((3-fluorophenyl)ethynyl)-N-(3-hydroxy-3-methylbutan-2-yl)picolinamide (VU0424465), N-cyclobutyl-6-((3-fluorophenyl)ethynyl)picolinamide (VU0360172), 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE), ((4-fluorophenyl) (2-(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridin-5(4H)-yl)methanone) (VU0409551), 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB)] on receptor desensitization and whether cellular context influences receptor regulatory processes. Only VU0424465 and VU0409551 induced desensitization alone in human embryonic kidney 293-mGlu5 cells, while all PAMs enhanced (S)-3,5-dihydroxyphenylglycine (DHPG)-induced desensitization. All mGlu5 PAMs induced receptor desensitization alone and enhanced DHPG-induced desensitization in striatal neurons. VU0424465 and VU0360172 were the only PAMs that induced desensitization alone in cortical neurons. With the exception of (CDPPB), PAMs enhanced DHPG-induced desensitization in cortical neurons. Moreover, differential apparent affinities, efficacies, and cooperativities with DHPG were observed for VU0360172, VU0409551, and VU0424465 when comparing receptor activation and desensitization in a cell type-dependent manner. These data indicate that biased mGlu5 allosteric modulator pharmacol. extends to receptor regulatory processes in a tissue dependent manner, adding yet another layer of complexity to rational mGlu5 drug discovery.

There are many compounds similar to this compound(1452-77-3)Application of 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

What I Wish Everyone Knew About 1452-77-3

There are many compounds similar to this compound(1452-77-3)Related Products of 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Dihydrofolate Reductase Inhibitors: The Pharmacophore as a Guide for Co-Crystal Screening, published in 2021, which mentions a compound: 1452-77-3, mainly applied to crystal screening dihydrofolate reductase inhibitor pharmacophore trimethoprim pyrimethamine pyridinecarboxamide; 2,4-diaminopyrimidine; caffeine; co-crystal screening; dihydrofolate reductase inhibitors; pharmacophore; pyridinecarboxamides; pyrimethamine; theophylline; trimethoprim, Related Products of 1452-77-3.

In this work, co-crystal screening was carried out for two important dihydrofolate reductase (DHFR) inhibitors, trimethoprim (TMP) and pyrimethamine (PMA), and for 2,4-diaminopyrimidine (DAP), which is the pharmacophore of these active pharmaceutical ingredients (API). The isomeric pyridinecarboxamides and two xanthines, theophylline (THEO) and caffeine (CAF), were used as co-formers in the same exptl. conditions, in order to evaluate the potential for the pharmacophore to be used as a guide in the screening process. In silico co-crystal screening was carried out using BIOVIA COSMOquick and exptl. screening was performed by mechanochem. and supported by (solid + liquid) binary phase diagrams, IR spectroscopy (FTIR) and X-ray powder diffraction (XRPD). The in silico prediction of low propensities for DAP, TMP and PMA to co-crystallize with pyridinecarboxamides was confirmed: a successful outcome was only observed for DAP + nicotinamide. Successful synthesis of multicomponent solid forms was achieved for all three target mols. with theophylline, with DAP co-crystals revealing a greater variety of stoichiometries. The crystalline structures of a (1:2) TMP:THEO co-crystal and of a (1:2:1) DAP:THEO:ethyl acetate solvate were solved. This work demonstrated the possible use of the pharmacophore of DHFR inhibitors as a guide for co-crystal screening, recognizing some similar trends in the outcome of association in the solid state and in the mol. aggregation in the co-crystals, characterized by the same supramol. synthons.

There are many compounds similar to this compound(1452-77-3)Related Products of 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Flexible application of in synthetic route 1452-77-3

There are many compounds similar to this compound(1452-77-3)Recommanded Product: 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Owen, W. John; Meyer, Kevin G.; Slanec, Thomas J.; Wang, Nick X.; Meyer, Stacy T.; Niyaz, Noormohamed M.; Rogers, Richard B.; Bravo-Altamirano, Karla; Herrick, Jessica L.; Yao, Chenglin published the article 《Synthesis and biological activity of analogs of the antifungal antibiotic UK-2A. I. Impact of picolinamide ring replacement》. Keywords: Leptosphaeria nodorum; Puccinia triticina; Qi-site; UK-2A; Zymoseptoria tritici; antifungal activity; cytochrome c reductase; picolinic acid SAR.They researched the compound: Picolinamide( cas:1452-77-3 ).Recommanded Product: 1452-77-3. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1452-77-3) here.

BACKGROUND : The antifungal antibiotic UK-2A strongly inhibits mitochondrial electron transport at the Qi site of the cytochrome bc1 complex. Previous reports have described semi-synthetic modifications of UK-2A to explore the structure-activity relationship (SAR), but efforts to replace the picolinic acid moiety have been limited. RESULTS : Nineteen UK-2A analogs were prepared and evaluated for Qi site (cytochrome c reductase) inhibition and antifungal activity. While the majority are weaker Qi site inhibitors than UK-2A (IC50, 3.8 nM), compounds 2, 5, 13 and 16 are slightly more active (IC50, 3.3, 2.02, 2.89 and 1.55 nM, resp.). Compared to UK-2A, compounds 13 and 16 also inhibit growth of Zymoseptoria tritici and Leptosphaeria nodorum more strongly, while 2 and 13 provide stronger control of Z. tritici and Puccinia triticina in glasshouse tests. The relative activities of compounds 1-19 are rationalized based on a homol. model constructed for the Z. tritici Qi binding site. Phys. properties of compounds 1-19 influence translation of intrinsic activity to antifungal growth inhibition and in planta disease control. CONCLUSIONS : The 3-hydroxy-4-methoxy picolinic acid moiety of UK-2A can be replaced by a variety of o-hydroxy-substituted arylcarboxylic acids that retain strong activity against Z. tritici and other agriculturally relevant fungi. © 2018 Society of Chem. Industry

There are many compounds similar to this compound(1452-77-3)Recommanded Product: 1452-77-3. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

You Should Know Something about 1452-77-3

I hope my short article helps more people learn about this compound(Picolinamide)Related Products of 1452-77-3. Apart from the compound(1452-77-3), you can read my other articles to know other related compounds.

Li, Kai; Sun, Hongjian; Yang, Wenjing; Wang, Yajie; Xie, Shangqing; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter published the article 《Efficient dehydration of primary amides to nitriles catalyzed by phosphorus-chalcogen chelated iron hydrides》. Keywords: nitrile preparation; primary amide dehydration phosphorus chalcogen chelated iron hydride catalyst.They researched the compound: Picolinamide( cas:1452-77-3 ).Related Products of 1452-77-3. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1452-77-3) here.

A series of phosphorus-chalcogen chelated hydrido iron (II) complexes, (o-(R’2P)-p-R-C6H4Y)FeH(PMe3)3I (R = H, Me; R’ = iPr, Ph; Y = O, S, Se) were synthesized. The catalytic performances of I for dehydration of amides to nitriles were explored by comparing three factors: (1) different chalcogen coordination atoms Y; (2) R’ group of the phosphine moiety; (3) R substituent group at the Ph ring. It is confirmed that I (R = H; R’ = Ph; Y = S) with S as coordination atom has the best catalytic activity and I (R = H; R’ = Ph; Y = Se) with Se as coordination atom has the poorest catalytic activity among complexes I (R = H; R’ = Ph; Y = O), I (R = H; R’ = Ph; Y = S) and I (R = H; R’ = Ph; Y = Se). Electron-rich complex I (R = Me; R’ = iPr; Y = O) is the best catalyst among the seven complexes and the dehydration reaction was completed by using 2 mol% catalyst loading at 60° with 24 h in the presence of (EtO)3SiH in THF. Catalyst I (R = Me; R’ = iPr; Y = O) has good tolerance to many functional groups. Among the seven iron complexes, new complexes I (R = H, Me; R’ = iPr; Y = O) were obtained via the O-H bond activation of the preligands o-iPr2P(C6H4)OH and o-iPr2P-p-Me-(C6H4)OH by Fe(PMe3)4. Both I (R = H, Me; R’ = iPr; Y = O) were characterized by spectroscopic methods and X-ray diffraction anal. The catalytic mechanism was exptl. studied and also proposed.

I hope my short article helps more people learn about this compound(Picolinamide)Related Products of 1452-77-3. Apart from the compound(1452-77-3), you can read my other articles to know other related compounds.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem