Archives for Chemistry Experiments of 15227-42-6

This literature about this compound(15227-42-6)COA of Formula: C10H10Cl2N2Pthas given us a lot of inspiration, and I hope that the research on this compound(cis-Dichlorobis(pyridine)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

COA of Formula: C10H10Cl2N2Pt. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Reactions of potassium tetrachloroplatinate(II) with pyridine derivatives in dimethylformamide and synthesis of potassium trichloro(pyridine)platinum(II). Author is Kong, Pi-Chang; Rochon, F. D..

The reactions of K2PtCl4 with pyridine derivatives L (L = py = pyridine, pic = picoline, and lut = lutidine) were studied in DMF. K[PtLCl3] (I) were isolated and the yield decreased with the order, 2,4-lut = 2-pic > 2,6-lut > 4-pic = py, which can be correlated to the steric hindrance of the ortho Me groups. Cis-[PtL2Cl2] (II) is the final product of the reactions. Trans-[PtL2Cl2] (III) can also be obtained from a DMF solution of [Pt(L)4]Cl2 (L = py) at room temperature A comparison of the above reactions in H2O and in DMF was also made.

This literature about this compound(15227-42-6)COA of Formula: C10H10Cl2N2Pthas given us a lot of inspiration, and I hope that the research on this compound(cis-Dichlorobis(pyridine)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Interesting scientific research on 15227-42-6

This literature about this compound(15227-42-6)Synthetic Route of C10H10Cl2N2Pthas given us a lot of inspiration, and I hope that the research on this compound(cis-Dichlorobis(pyridine)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, Non-U.S. Gov’t, Validation Study, Journal of Inorganic Biochemistry called The RP-HPLC measurement and QSPR analysis of log Po/w values of several Pt(II) complexes, Author is Platts, James A.; Oldfield, Steven P.; Reif, Maria M.; Palmucci, Alessandra; Gabano, Elisabetta; Osella, Domenico, which mentions a compound: 15227-42-6, SMILESS is [Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2, Molecular C10H10Cl2N2Pt, Synthetic Route of C10H10Cl2N2Pt.

The n-octanol/water partition coefficient, log Po/w, for a set of 24 Pt(II)-complexes was estimated by means of reversed-phase high performance liquid chromatog. (RP-HPLC) technique using a C18 (ODS, octadecyl silane) column as a stationary phase and water/methanol mixtures as mobile phases. Based on the known log P o/w of several Pt(II)-complexes, the authors set a method to correlate the partition coefficient of this kind of complexes with the corresponding retention parameters. The best result was obtained from extrapolation to 0% of the organic modifier (MeOH) of the aqueous eluant. A quant. structure-property relationship (QSPR) was constructed using mol. descriptors derived from d. functional theory (DFT) calculations, which was found to correlate and predict these values with good accuracy. The use of DFT calculations is required because group-additive methods fail due to lack of values for appropriate fragments for many Pt(II)-complexes.

This literature about this compound(15227-42-6)Synthetic Route of C10H10Cl2N2Pthas given us a lot of inspiration, and I hope that the research on this compound(cis-Dichlorobis(pyridine)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Something interesting about 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Product Details of 15227-42-6, illustrating the importance and wide applicability of this compound(15227-42-6).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Antitumor platinum compounds. Relation between structure and activity.Product Details of 15227-42-6.

A pair of cis leaving groups is necessary but not sufficient for anticancer activity in Pt(II) complexes. The complex should be neutral and the lability of the leaving groups should be about that of Cl in cis-dichlorodiammineplatinum(II) [15663-27-1]. The other ligands should be relatively inert and neutral. Amines are preferred, although varying their structure has not given a clear pattern. However the activity of compounds containing alicyclic amines indicates that some Pt compounds may be highly selective.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Product Details of 15227-42-6, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Machine Learning in Chemistry about 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Category: tetrahydroisoquinoline, illustrating the importance and wide applicability of this compound(15227-42-6).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Binding of antitumor platinum compound to cells as influenced by physical factors and pharmacologically active agents, published in 1973, which mentions a compound: 15227-42-6, mainly applied to tumor cell platinum compound binding, Category: tetrahydroisoquinoline.

Tritiated cis-dichloro(dipyridine)platinum(II) (I) [15227-42-6] bound to intact Ehrlich ascites tumor cells at 37.deg. in vitro and remained associated with the acid-insoluble fraction of the cells. The extent of binding was also increased with increasing hydrogen ion [1333-74-0] concentration in the medium. The binding was enhanced markedly at 60.deg. and the maximum number of binding sites/cell was .sim.7 billion at this temperature Of 49 chems. and drugs tested, none decreased appreciably the rate and extent of binding, whereas certain heavy metals, and compounds that compromise membrane permeability enhanced the binding. Human and bovine lymphocytes had similar binding characteristics, but bound much more I/unit of cell volume.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Category: tetrahydroisoquinoline, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Interesting scientific research on 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Application of 15227-42-6, illustrating the importance and wide applicability of this compound(15227-42-6).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Density functional theory and surface enhanced Raman spectroscopy characterization of novel platinum drugs, published in 2002, which mentions a compound: 15227-42-6, mainly applied to anticancer platinum complex density functional theory; Raman spectroscopy anticancer platinum complex, Application of 15227-42-6.

There is considerable interest in the development of novel platinum-based anticancer drugs that overcome the disadvantages associated with the widely used drug cisplatin, which are its inactivity against some types of tumors and its toxic side effects. In this study we show the suitability of normal Raman spectroscopy (NRS) and surface enhanced Raman spectroscopy (SERS), assisted by d. functional theor. (DFT) calculations, for the characterization of Pt complexes. The Pt complexes studied include the established drugs cisplatin and carboplatin, as well as five novel Pt complexes with anticancer activity. DFT calculations at the B3LYP/LanL2DZ level are a good prediction of the exptl. NRS spectra of small and medium sized Pt complexes. The use of SERS allows the investigation of Pt complexes at physiol. concentrations, and the binding strengths of the different ligands can be determined The formation of pos. charged hydrolysis products may be necessary for SERS activity. The existing group in the hydrolysis reaction can be identified.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Application of 15227-42-6, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some scientific research tips on 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Computed Properties of C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Computed Properties of C10H10Cl2N2Pt. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Reactions of potassium tetrachloroplatinate(II) with pyridine derivatives in dimethylformamide and synthesis of potassium trichloro(pyridine)platinum(II). Author is Kong, Pi-Chang; Rochon, F. D..

The reactions of K2PtCl4 with pyridine derivatives L (L = py = pyridine, pic = picoline, and lut = lutidine) were studied in DMF. K[PtLCl3] (I) were isolated and the yield decreased with the order, 2,4-lut = 2-pic > 2,6-lut > 4-pic = py, which can be correlated to the steric hindrance of the ortho Me groups. Cis-[PtL2Cl2] (II) is the final product of the reactions. Trans-[PtL2Cl2] (III) can also be obtained from a DMF solution of [Pt(L)4]Cl2 (L = py) at room temperature A comparison of the above reactions in H2O and in DMF was also made.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Computed Properties of C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

The effect of the change of synthetic route on the product 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Product Details of 15227-42-6, illustrating the importance and wide applicability of this compound(15227-42-6).

Product Details of 15227-42-6. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Reactivity of geometric isomers of (-)-dichloropyridine(methyl p-tolyl sulfoxide)platinum(II) by optical rotatory dispersion. Author is De Vekki, D. A.; Spevak, V. N.; Skvortsov, N. K..

The reactions of the optically active geometric isomers of (-)-[Pt(Me-p-TolSO)(Py)Cl2] with several nucleophilic reagents (py, Ph3PS, Ph3P, Ph3As, and Me2SO) were studied by ORD, IR spectroscopy, and 1H and 31P NMR spectroscopy. A mechanism for the reaction is proposed.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Product Details of 15227-42-6, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

The influence of catalyst in reaction 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about trans-Dichlorotetrakis(pyridine)platinum(IV) nitrate: a classical coordination compound, the main research direction is platinum 4 chloro pyridine; pyridine covalent hydrate platinum chloro.Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II).

Claims that trans-[PtCl2(py)4](NO3)2 forms a covalent hydrate when dissolved in water are shown to be in error; the observed acidity of the aqueous solution is due to the presence of a small amount of a strongly acidic impurity, and all of the observed phys. and spectroscopic properties of the salt are simply interpreted in terms of classical coordination chem.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Now Is The Time For You To Know The Truth About 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Synthetic Route of C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Journal of Luminescence called The effect of complexation with platinum in polyfluorene derivatives: A photo- and electro-luminescence study, Author is Assaka, Andressa M.; Hu, Bin; Mays, Jimmy; Iamazaki, Eduardo T.; Atvars, Teresa D. Z.; Akcelrud, Leni, which mentions a compound: 15227-42-6, SMILESS is [Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2, Molecular C10H10Cl2N2Pt, Synthetic Route of C10H10Cl2N2Pt.

The synthesis and characterization of a polymeric structure containing fluorene units statistically linked to 3-cyclohexyl-thiophene and bipyridine PFOTBipy-poly[(4-hexylthiophene-2,5-diyl)(9,9-dihexyl-fluoren-2,7-diyl)-co-(bipyridine-5.5′-diyl)(9,9-dihexyl-fluoren-2,7-diyl)], is reported. The complexation with platinum was possible through the bipyridil units present in 10%, 50% and 100% content. The structure has a fluorenyl moiety between each bipyridine and thiophene groups resulting in a stable and efficient light-emitting polymeric material combining the well known emissive properties of fluorene, the charge mobility generated by thiophene and the electron-transfer properties of a metal complex as well. All the polymers were photo and electroluminescent materials, and showed phosphorescence at low temperatures Photoluminescence properties were studied by steady state and time resolved spectroscopy and showed changes of both emission peak and relative intensity of the emission bands depending on the relative amount of the platinum complex. The electroluminescence followed the trends found for photoluminescence. The blue emission of the copolymer without platinum is due to the fluorenyl segments and for higher complex contents the emission is characteristic of the aggregates involving the bipyridinyl moieties. Therefore, emission color can be tuned by the complex content. The turn-on voltage was strongly reduced from 22 to 8 V for the 100% complexed copolymer, as compared to the device made with the non complexed one, but the luminance decreased, due to quenching or trapping effects.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Synthetic Route of C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Research on new synthetic routes about 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))COA of Formula: C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 15227-42-6, is researched, Molecular C10H10Cl2N2Pt, about Hydroxy complexes of platinum(II) and palladium(II), the main research direction is palladium hydroxy phosphine complex; platinum hydroxy phosphine complex; hydroxy palladium platinum complex; phosphine palladium platinum complex; structure palladium platinum complex.COA of Formula: C10H10Cl2N2Pt.

The preparation of hydroxy bridged complexes, [M2(OH)2-L4][BF4]2, where M = Pt and L = Et3P, Ph3P or py, or where M = Pd and L = Ph3P, is described. The structures are unambiguously established by ir, NMR, and x-ray crystallog. studies. The complexes are stable and resist bridge cleavage by tertiary phosphines under conditions which easily cleave analogous chloro bridged complexes.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))COA of Formula: C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem