Our Top Choice Compound: 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Druding, Leonard F.; Shupack, Saul I. published the article 《Separation of square planar complexes by thin layer chromatography》. Keywords: PYRIDINE COMPLEX CHROMATOG; THIN LAYER CHROMATOG; CHROMATOG SEPN SQUARE PLANAR COMPLEX; PLATINUM COMPLEX CHROMATOG; PALLADIUM COMPLEX CHROMATOG; SEPN SQUARE PLANAR COMPLEX.They researched the compound: cis-Dichlorobis(pyridine)platinum(II)( cas:15227-42-6 ).Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II). Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:15227-42-6) here.

Uncharged sq. planar Pt and Pd complexes were separated by using plates with a 100 μ coating of silica gel bound by poly(vinyl alc.) and activated for 30 min. at 115°. The solvent was HCCl3 containing 3 drops Me2SO per 100 ml. Typical Rf values are given. Separation of cis- and trans-Ptpy2X2 (X = Cl, Br) was particularly successful, while cis- and trans-Pt(NH3)2Cl2 could not be separated The mechanism of separation appears to be via surface adsorption. Layer thickness, activation conditions, and solvent travel time are therefore very critical

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Brief introduction of 15227-42-6

This literature about this compound(15227-42-6)Name: cis-Dichlorobis(pyridine)platinum(II)has given us a lot of inspiration, and I hope that the research on this compound(cis-Dichlorobis(pyridine)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: cis-Dichlorobis(pyridine)platinum(II)(SMILESS: [Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2,cas:15227-42-6) is researched.HPLC of Formula: 693-67-4. The article 《Kinetics of oxidation of dichlorobis(substituted pyridine)platinum(II) and of reduction of tetrachlorobis(substituted pyridine)platinum(IV) complexes》 in relation to this compound, is published in Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999). Let’s take a look at the latest research on this compound (cas:15227-42-6).

The kinetics of oxidation of cis-[PtCl2L2] (L = py, 3-methyl-, 3- and 4-chloro-, 3- and 4-cyanopyridine) by [AuCl4]- in the presence of [NEt4]Cl and of reduction of cis-[PtCl4L2] by [NEt4]I were studied in MeCN. The rate law for the oxidation reaction was rate = k3[PtCl2L2][AuCl4-][Cl-], where k3 was unaffected by changes in L and had a value ∼100 times higher than that previously found for related phenanthrolineplatinum(II) complexes. The rate law for the reduction reaction was rate = k2[PtCl4L2][I-], where k2 was influenced by the basicity of L, as in related phenanthrolineplatinum(IV) complexes. The kinetic results were discussed in terms of σ and π interactions between the Pt and L.

This literature about this compound(15227-42-6)Name: cis-Dichlorobis(pyridine)platinum(II)has given us a lot of inspiration, and I hope that the research on this compound(cis-Dichlorobis(pyridine)platinum(II)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Interesting scientific research on 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Quality Control of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Quality Control of cis-Dichlorobis(pyridine)platinum(II). The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Infrared spectroscopic study of dicyanato complexes of platinum. Author is Kharitonov, Yu. Ya.; Evstaf’eva, O. N.; Baranovskii, I. B.; Mazo, G. Ya..

trans-[Pt(NH3)2(CN)2] (I), trans-[Pt(ND3)2(CN)2], trans-Pt(NH3)2(CN)2.AgNO3, trans-[Pt(NH3)2(CN)2X2] (II) where X = Cl, Br, I, or OH, trans-[Pt(ND3)2(CN)2X2] where X = Br or I, cis-[PtA(CN)2] where A = (NH3)2, (pyridine)2, ethylenediamine, or (thiourea)2, cis-[Pten(CN)2X2] where X is Br or OH were studied by ir spectroscopy. Maximum of these compounds are tabulated. On oxidation of Pt, the νpt-CN did not change while νC-N increased ∼40-70 cm.-1 All trans complexes had a singlet and all cis had a doublet νCN. The split for cis complexes was larger for Pt(II) than for Pt(IV). The force constant of the C-N bond changed insignificantly, especially in Pt(II) complexes, on transition from ionic to covalent cyanides. Apparently the σ-bond contribution is larger in Pt(IV) than in Pt(II) complexes. When I was oxidized to II (X = Br) and, this subsequently became reduced, the product obtained was identical with the starting material. The complexes did not rearrange on oxidation and the nature of the X in II did not affect the Pt-N bonds. The νPt-N of trans isomers were at ∼525-31 cm.-1 for Pt(II) or Pt(IV). For the complexes studied, the overall (σ + π) bond strength of Pt-N was approx. the same in Pt(II) and Pt(IV) complexes.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Quality Control of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Chemical Research in 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Name: cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Lasitsa, N. A.; Skvortsov, N. K.; Lobadyuk, V. I.; Spevak, V. N.; Esina, G. A.; Abramova, I. P.; Lazarev, S. Ya. published an article about the compound: cis-Dichlorobis(pyridine)platinum(II)( cas:15227-42-6,SMILESS:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2 ).Name: cis-Dichlorobis(pyridine)platinum(II). Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:15227-42-6) through the article.

A kinetic study of hydrosilylation of MeCOPh with MeSiHCl2 or MeSiPhH2 in the presence of LL1PtX2 (X = Cl, Br; L = L1 = Me2SO, Et2SO, py, Et3P, MeSOC6H4Me-4; L = C2H4, L1 = Me2SO, Et2SO; L = py, L1 = Et2SO; L = MeSOC6H4Me-4, L1 = Bu3P) catalysts showed a relationship between the ligand type and catalytic activity. In contrast with bis(phosphine) and bis(olefin) complexes, bis(sulfoxide) complexes and all complexes with mixed ligands, one of which is sulfoxide, show high catalytic activity. For the reaction with MeSiHCl2, the order of reactivity is olefin > SO > P(III) > py, close to an analogous relationship for the hydrosilylation of olefins.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Name: cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some scientific research about 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Quality Control of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Redox-active films formed by electrochemical reduction of solutions of C60 and platinum complexes, published in 2002-07-31, which mentions a compound: 15227-42-6, mainly applied to redox active film electrochem reduction solution fullerene platinum complex; pyridine chloro platinum complex ferrocene electroreduction redox active film, Quality Control of cis-Dichlorobis(pyridine)platinum(II).

Electroreduction of a toluene-acetonitrile (4:1 volume/volume) solution of C60 and cis-Pt(py)2Cl2 in the presence of 0.10M tetra(n-butyl)ammonium perchlorate as supporting electrolyte produces a black, redox active film that coats the electrode surface. This film retains its redox activity when transferred to an acetonitrile solution that contains only the supporting electrolyte, 0.10M tetra(n-butyl)ammonium perchlorate. The film was characterized by IR spectroscopy, laser desorption mass spectrometry, and XPS spectroscopy. The formation of this film is dependent on the platinum complex used as precursor and on the potential range used during film growth. No film growth is observed when Pt(bipy)Cl2, Pt(py)2I2, cis-Pt(PPh3)2Cl2 or trans-Pt(py)2Cl2 were used as precursors, but {Pt(μ-Cl)Cl(C2H4)}2 is a useful precursor which allows film growth at less neg. potentials. Chem. prepared C60Pt1 is also electrochem. active when precipitated on a platinum electrode. The formation of an electroactive film from the electroreduction of C70 and cis-Pt(py)2Cl2 is also reported.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Quality Control of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Fun Route: New Discovery of 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Synthetic Route of C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Synthetic Route of C10H10Cl2N2Pt. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Oxidation of platinum(II) complexes by antimony pentachloride derivatives. Author is Kukushkin, V. Yu.; Tkachuk, V. M..

[Ph3PCH2Ph]2[PtXCl3] (X = Cl, NO2) are oxidized by Sb(BzCl)Cl5 (I) or Et3NCH2Ph[SbCl6] (II) in MeNO2, MeCN or DMF to give (Ph3PCH2Ph)2[PtXCl5]. SbCl5 oxidizes cis- and trans-Pt(py)2Cl2 to give cis- and trans-[Pt(py)2Cl4], resp. I oxidizes trans-[Pt(NH2CH2CO2H)2Cl2] to give trans-[Pt(NH2CH2CO2H)2Cl4] which on reaction with PCl5 in MeCN gives trans-[Pt(NH2CH2COCl)2Cl4]. [Pt(py)4]Cl2 reacted with I to give trans-[Pt(py)2Cl4]. cis- And trans-[PtL2Cl2] (L = PPh3, SMe2) are not oxidized by I or II.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Synthetic Route of C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Can You Really Do Chemisty Experiments About 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Name: cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Name: cis-Dichlorobis(pyridine)platinum(II). The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Trifluoromethanesulfonato-O complexes of platinum(II) and palladium(II). Author is Diver, Catherine; Lawrance, Geoffrey A..

Reaction of chloroplatinum(II) and chloropalladium(II) complexes containing amine, pyridine, or phosphine ligands at or above room temperature with anhydrous CF3SO3H gave F3CSO3–O complexes, characterized spectroscopically. The complexes cis-[Pt(NH3)2(OSO2CF3)2], trans-[Pt(NH3)2Cl(OSO2CF3)], Pt(en)Cl(OSO2CF3)], [Pt(dppe)(OSO2CF3)2], [Pt(py)2Cl(OSO2CF3)], [Pt(terpy)(OSO2CF3)][CF3SO3], (terpy = 2,2′:6′,2′-terpyridine), trans-[Pd(NH3)2Cl(OSO2CF3)], [Pd(en)(OSO2CF3)2], [Pd(bpy)(OSO2CF3)2] (bpy = 2,2′-bipyridine), and [Pd(PPh3)2(OSO2CF3)2] were isolated. Aquation reactions of selected complexes showed that F3CSO3- hydrolysis is rapid for complexes of both PtII and PdII. Pt(O3SCF3)2 complexes exhibit 2 consecutive rate processes, with k1/k2 ca. 5, consistent with sequential hydrolysis of both anions. Coordinated CF3SO3- in these complexes may be substituted even by neutral coordinating O-donor solvents.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Name: cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Chemical Properties and Facts of 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Reference of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Ligand effects in platinum binding to DNA. A comparison of DNA binding properties for cis- and trans-[PtCl2(amine)2] (amine = NH3, pyridine).Reference of cis-Dichlorobis(pyridine)platinum(II).

The DNA binding properties of cis- and trans-[PtCl2(pyridine)2] have been examined and compared with their NH3 analogs, cis- and trans-DDP. The presence of a planar ligand reduces the rates of DNA binding but does not greatly affect the overall conformation of CT DNA, as measured by CD spectroscopy. The sequence specificity of trans-[PtCl2(py)2] includes alternating purine-pyrimidine sequences. The sequence specificity is further different between the two pyridine isomers, and the steric effects of two cis-pyridine groups are demonstrated by the appearance of relatively few binding sites in the 49-bp duplex. The effects of the pyridine ligand are further manifested by a greatly enhanced DNA-DNA interstrand crosslinking efficiency for the trans isomer, with a cross-link per adduct frequency of between 0.14 and 0.23, depending on the rb of the sample. The unwinding of closed circular pUC19 DNA by trans-[PtCl2(pyridine)2] is also more efficient than that by either DDP isomer. In contrast, little unwinding is induced by cis-[PtCl2(pyridine)2]. These results invert the standard cis/trans structure-activity relationships observed previously for [PtCl2(NH3)2]. The results are discussed with respect to the previously demonstrated effect of activation of the trans-platinum geometry using sterically hindered ligands.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Reference of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some scientific research about 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Safety of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Conformational properties of purine and pyrimidine complexes of cis-platinum. Implications for platinum(II)-DNA crosslinking modes, the main research direction is platinum complex conformation DNA binding; structure activity platinum complex; neoplasm inhibitor platinum complex; stereochem DNA platinum complex.Safety of cis-Dichlorobis(pyridine)platinum(II).

The stereochem. properties of a variety of cis complexes of Pt(II) containing purine or pyrimidine ligands are examined The critical intramol. conformational parameters [the interbase dihedral angle and the base/coordination plane dihedral angles] are systematically studied and trends sought. Where intramol. interactions are determinative of the adopted mol. conformation, the nature of the steric demands imposed by increasing numbers of exocyclic functional groups contiguous to the Pt binding site are clearly of major importance for the antitumor activity.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Safety of cis-Dichlorobis(pyridine)platinum(II), illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Why Are Children Getting Addicted To 15227-42-6

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Formula: C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Diver, Catherine; Lawrance, Geoffrey A. published the article 《Trifluoromethanesulfonato-O complexes of platinum(II) and palladium(II)》. Keywords: trifluoromethanesulfonato palladium platinum complex; hydrolysis kinetics trifluoromethanesulfonato platinum.They researched the compound: cis-Dichlorobis(pyridine)platinum(II)( cas:15227-42-6 ).Formula: C10H10Cl2N2Pt. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:15227-42-6) here.

Reaction of chloroplatinum(II) and chloropalladium(II) complexes containing amine, pyridine, or phosphine ligands at or above room temperature with anhydrous CF3SO3H gave F3CSO3–O complexes, characterized spectroscopically. The complexes cis-[Pt(NH3)2(OSO2CF3)2], trans-[Pt(NH3)2Cl(OSO2CF3)], Pt(en)Cl(OSO2CF3)], [Pt(dppe)(OSO2CF3)2], [Pt(py)2Cl(OSO2CF3)], [Pt(terpy)(OSO2CF3)][CF3SO3], (terpy = 2,2′:6′,2′-terpyridine), trans-[Pd(NH3)2Cl(OSO2CF3)], [Pd(en)(OSO2CF3)2], [Pd(bpy)(OSO2CF3)2] (bpy = 2,2′-bipyridine), and [Pd(PPh3)2(OSO2CF3)2] were isolated. Aquation reactions of selected complexes showed that F3CSO3- hydrolysis is rapid for complexes of both PtII and PdII. Pt(O3SCF3)2 complexes exhibit 2 consecutive rate processes, with k1/k2 ca. 5, consistent with sequential hydrolysis of both anions. Coordinated CF3SO3- in these complexes may be substituted even by neutral coordinating O-donor solvents.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-Dichlorobis(pyridine)platinum(II))Formula: C10H10Cl2N2Pt, illustrating the importance and wide applicability of this compound(15227-42-6).

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem