You Should Know Something about 15227-42-6

Although many compounds look similar to this compound(15227-42-6)Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Marcelis, A. T. M.; Van der Veer, J. L.; Zwetsloot, J. C. M.; Reedijk, J. researched the compound: cis-Dichlorobis(pyridine)platinum(II)( cas:15227-42-6 ).Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II).They published the article 《Rotation and conformation of purine ligands in cis-bis(6-oxopurine)platinum compounds》 about this compound( cas:15227-42-6 ) in Inorganica Chimica Acta. Keywords: platinum purine diamine pyridine NMR; guanosine platinum diamine pyridine NMR; methylhypoxanthine platinum diamine pyridine NMR; conformation purine platinum complex NMR. We’ll tell you more about this compound (cas:15227-42-6).

cis-[PtL2L12]2+ (L = guanosine, 9-methylhypoxanthine, L1 = Me-substituted 1,3-propanediamines, py, α-picoline, 2,2′-bipyridine, 1,2-bis(pyridin-2-yl)ethane) were prepared and studied by NMR. Rotation of L about their Pt-N7 bonds is fast on the NMR time scale, when no Me groups are present on the nitrogens of the 1,3-propanediamine ligands. Rotation is slow when 2 Me groups are present on 1 N of a 1,3-propanediamine chelate. A single Me group on a N hardly seems to interfere with this rotation. Coordinated pyridines do not hinder rotation. In compounds containing 2-methylpyridine ligands, the rotation of the pyridines is slow at room temperature, but becomes fast at higher temperatures Rotation of L, however, is fast on the NMR time scale from -30 to +90°. In compounds containing 1,2-bis(pyridin-2-yl)ethane, rotation of L is slow at low temperatures, but becomes fast at room temperature Furthermore, the results obtained with these compounds show that the purines are preferentially oriented in a head-to-tail arrangement.

Although many compounds look similar to this compound(15227-42-6)Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Discovery of 15227-42-6

Although many compounds look similar to this compound(15227-42-6)Category: tetrahydroisoquinoline, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: cis-Dichlorobis(pyridine)platinum(II)(SMILESS: [Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2,cas:15227-42-6) is researched.Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II). The article 《Rotation and conformation of purine ligands in cis-bis(6-oxopurine)platinum compounds》 in relation to this compound, is published in Inorganica Chimica Acta. Let’s take a look at the latest research on this compound (cas:15227-42-6).

cis-[PtL2L12]2+ (L = guanosine, 9-methylhypoxanthine, L1 = Me-substituted 1,3-propanediamines, py, α-picoline, 2,2′-bipyridine, 1,2-bis(pyridin-2-yl)ethane) were prepared and studied by NMR. Rotation of L about their Pt-N7 bonds is fast on the NMR time scale, when no Me groups are present on the nitrogens of the 1,3-propanediamine ligands. Rotation is slow when 2 Me groups are present on 1 N of a 1,3-propanediamine chelate. A single Me group on a N hardly seems to interfere with this rotation. Coordinated pyridines do not hinder rotation. In compounds containing 2-methylpyridine ligands, the rotation of the pyridines is slow at room temperature, but becomes fast at higher temperatures Rotation of L, however, is fast on the NMR time scale from -30 to +90°. In compounds containing 1,2-bis(pyridin-2-yl)ethane, rotation of L is slow at low temperatures, but becomes fast at room temperature Furthermore, the results obtained with these compounds show that the purines are preferentially oriented in a head-to-tail arrangement.

Although many compounds look similar to this compound(15227-42-6)Category: tetrahydroisoquinoline, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

A new application about 15227-42-6

Although many compounds look similar to this compound(15227-42-6)Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Mattern, I. E.; Cocchiarella, L.; Van Kralingen, C. G.; Lohman, P. H. M. published an article about the compound: cis-Dichlorobis(pyridine)platinum(II)( cas:15227-42-6,SMILESS:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2 ).Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II). Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:15227-42-6) through the article.

Eleven Pt compounds with N donor ligands (aminocyclopentane, aminocyclohexane, pyridine, etc.), previously tested for antitumor activity, were studied for induction of prophage λ and for mutagenicity in the Ames assay, with various strains of Salmonella. The compounds included cis and trans isomers of Pt(II) and Pt(IV) complexes and were tested with and without metabolic activation. All the cis compounds elicited prophage induction, whereas the trans compounds were inactive. Mutagenicity was found only in strains containing the R factor, indicating that SOS-type repair processes are required for the conversion of initial DNA lesions into mutations. Mutation induction was also influenced by the excision-repair process. The 2 trans compounds were not, or only slightly, mutagenic; all other compounds were mutagenic in at least one strain, exhibited a 2-20-fold increase over the spontaneous background level. Addition of liver homogenate had no significant effect on the number of mutants. One compound induced exclusively frameshift mutations. The other mutagenic compounds induced frameshift mutations as well as base-pair substitutions. Seven compounds were more mutagenic for the repair-proficient than for the repair-deficient strains; only one showed the opposite effect. Apparently, for mutagenicity testing of Pt compounds, repair-proficient strains are more sensitive indicators. The differences in response of the various strains toward the compounds suggest the formation of different DNA lesions and(or) a selective action of repair processes on these lesions. In general, a good qual. correlation was observed between prophage-inducing capacity, mutagenicity in bacterial and mammalian cells and antitumor activity.

Although many compounds look similar to this compound(15227-42-6)Application In Synthesis of cis-Dichlorobis(pyridine)platinum(II), numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Derivation of elementary reaction about 15227-42-6

Although many compounds look similar to this compound(15227-42-6)Category: tetrahydroisoquinoline, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Category: tetrahydroisoquinoline. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Mass spectrometry of cis-platin in urine. Author is Sumino, Kimiaki; Mio, Takaya; Yamamoto, Ryoji; Ishigami, Joji; Kamidono, Sadao; Hamami, Gaku.

The mass spectra of cisplatin  [15663-27-1] and its analogs are presented. A urine sample of a cancer patient treated with cisplatin was extracted with 0.1N-HCl and then washed with COMe2/CHCl3. The component containing Pt was eluted with 2N-HBr using an ion exchange chromatog. technique. The mass spectrum of the component showed the change from Cl-type to Br-type as the unchanged type of carrier ligand. Thus, mass spectrometry may be a useful method to elucidate the action mechanism of cisplatin.

Although many compounds look similar to this compound(15227-42-6)Category: tetrahydroisoquinoline, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Why Are Children Getting Addicted To 15227-42-6

Although many compounds look similar to this compound(15227-42-6)HPLC of Formula: 15227-42-6, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya B: Geologiya, Geofizika, Khimiya ta Biologiya called Reactivity of neutral platinum(II) complexes, Author is Panasyuk, V. D.; Malashok, N. F., which mentions a compound: 15227-42-6, SMILESS is [Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2, Molecular C10H10Cl2N2Pt, HPLC of Formula: 15227-42-6.

Kinetic data were obtained for the hydrolysis of [PtenCl2], cis- and trans-[Pt(NH3)2Cl2], cis-[Ptpy2Cl2], and [Pten(NO2)Cl] and for the replacement of Cl by NH3 in trans-[Pt(NH3)2Cl2]. The medium was H2O and mixtures of H2O with MeOH, EtOH, or Me2CO, the concentration of the organic component being 30 and 40 weight % in the hydrolysis and replacement reactions, resp. The lowering of the reaction rate in the presence of the organic component is explained by a structure-dependent contribution of the component to the solvation energy of an intermediate complex. The hydrolysis reaction is assumed to proceed in 2 steps: (1) formation of an intermediate complex by a slow coordination of the H2O mol. to the Pt2+ central ion without release of Cl- and (2) by a quick release of Cl-. The bond polarization occurs during the 1st step and the rate constant, k, should equal the ratio of the activity coefficients of the initial and activated complexes.

Although many compounds look similar to this compound(15227-42-6)HPLC of Formula: 15227-42-6, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Our Top Choice Compound: 15227-42-6

Although many compounds look similar to this compound(15227-42-6)Category: tetrahydroisoquinoline, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: cis-Dichlorobis(pyridine)platinum(II)( cas:15227-42-6 ) is researched.Category: tetrahydroisoquinoline.Teicher, Beverly A.; Rockwell, Sara; Lee, Jonathan B. published the article 《Radiosensitization of EMT6 cells by four platinum complexes》 about this compound( cas:15227-42-6 ) in International Journal of Radiation Oncology, Biology, Physics. Keywords: radiosensitization EMT cell platinum complex; oxygen radiosensitization platinum complex. Let’s learn more about this compound (cas:15227-42-6).

The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 and 400 μM trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, resp. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 μM and 1.8 at 400 μM. Neither compound sensitized oxygenated cells when tested under similar protocols. Unlike the trans complexes, (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of x-rays. The time course of cytotoxicity for 100 μM Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 and 400 μM Plato, resp., in hypoxic cells. The compound did not sensitize aerobic cells. The well known Pt complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-Pt heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 μM PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional Pt complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

Although many compounds look similar to this compound(15227-42-6)Category: tetrahydroisoquinoline, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

New learning discoveries about 15227-42-6

Although many compounds look similar to this compound(15227-42-6)Electric Literature of C10H10Cl2N2Pt, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Electric Literature of C10H10Cl2N2Pt. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Cis-bis(pyridine)dichloro derivatives of platinum(IV). Author is Chernyaev, I. I.; Zheligovskaya, N. N.; Bavina, T. V..

The complexes Pt(py)2Cl2XNO2 (X = Cl-, Br-) and Pt(py)2Cl2(OH)NO2 were precipitated by adding 5-10 ml. H2O to mixtures of equivalent amounts of Pt(py)2Cl2(NO2)NO3 (I) and KCl, KBr, or KOH, resp. I reacts with KI to give a mixture of Pt(py)2Cl2I2 and Pt(py)2Cl2INO2. Chlorination of Pt(py)2Cl2 yields [Pt(py)2Cl2]Cl2. [Pt(py)2Cl2][Pt(py)2Cl2(OH)2] was obtained from Pt(py)2Cl2 and 10% aqueous H2O2 at room temperature after standing for 24 hrs. Individual species were identified by x-ray diffraction tests. The aqueous solutions of Pt(py)2Cl2XNO2 undergo hydrolysis according to: Pt(py)2Cl2XNO2 + H2O ⇌ [Pt(py)2Cl2X(H2O)]+ + NO2-, whereas the aqueous solutions of Pt(py)2Cl2(OH)2 and [Pt(py)2Cl2]Cl2 are considerably more stable. Solutions of Pt(py)2Cl2Br2 partially decompose in light to Pt(py)2Cl2, HBrO, and HBr, resp.

Although many compounds look similar to this compound(15227-42-6)Electric Literature of C10H10Cl2N2Pt, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

The important role of 15227-42-6

Compounds in my other articles are similar to this one(cis-Dichlorobis(pyridine)platinum(II))Recommanded Product: cis-Dichlorobis(pyridine)platinum(II), you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Recommanded Product: cis-Dichlorobis(pyridine)platinum(II). So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Spectroscopic study of square planar compounds of platinum(II) and palladium(II) with substituted pyridines. I. Vibrations of the ligands.

The ir spectra of methylpyridine Pt(II) and Pd(II) complexes were observed at 400-1700 cm-1. Bands were obtained which were displaced by coordination of the ligand or which were characteristics of cis and trans configurations of the planar complexes.

Compounds in my other articles are similar to this one(cis-Dichlorobis(pyridine)platinum(II))Recommanded Product: cis-Dichlorobis(pyridine)platinum(II), you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Top Picks: new discover of 15227-42-6

Compounds in my other articles are similar to this one(cis-Dichlorobis(pyridine)platinum(II))Product Details of 15227-42-6, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Thermal migration of amines in platinum(II) complexes, published in 1978-08-31, which mentions a compound: 15227-42-6, Name is cis-Dichlorobis(pyridine)platinum(II), Molecular C10H10Cl2N2Pt, Product Details of 15227-42-6.

Derivatog. data indicate that the 1st stage of the thermal conversion of (LH)2[PtCl4] (L = NH3, MeNH2, piperidine, pyridine, γ-picoline, PhNH2, p-toluidine, 8-hydroxyquinoline, quinoline) or (enH2)[PtCl4] is the cleavage of HCl and the formation of PtL2Cl2. All the complexes studied fall into 2 groups according to the temperature of the beginning of the process: (1) complexes with a temperature for the start of thermal reaction at 180 – 200° contain amines the basicity constants of which are >10-5 and (2) complexes with decomposition temperatures at 130-50° contain amines the basicity constants of which are <10-8. Compounds in my other articles are similar to this one(cis-Dichlorobis(pyridine)platinum(II))Product Details of 15227-42-6, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

The effect of the change of synthetic route on the product 15227-42-6

Although many compounds look similar to this compound(15227-42-6)Product Details of 15227-42-6, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: cis-Dichlorobis(pyridine)platinum(II), is researched, Molecular C10H10Cl2N2Pt, CAS is 15227-42-6, about Supramolecular Nanoencapsulation as a Tool: Solubilization of the Anticancer Drug trans-Dichloro(dipyridine)platinum(II) by Complexation with β-Cyclodextrin, the main research direction is beta cyclodextrin trans dichlorodipyridine platinum complex nanoencapsulation solubilization anticancer.Product Details of 15227-42-6.

A novel, water-soluble trans-platinum complex was synthesized by inclusion complexation with β-cyclodextrin. The complexation was confirmed by 1H NMR, FT-IR, TGA, and XRD as well as by SEM and EDX. As the precursor complex is not water-soluble, it is difficult to employ it for biol. applications. Here, we report that the encapsulation with cyclodextrin allowed to solubilize the complex to a solubility value of 1.6 mg/mL. Moreover, the cytotoxicity in vitro of the novel inclusion complex indicated a much higher activity after encapsulation.

Although many compounds look similar to this compound(15227-42-6)Product Details of 15227-42-6, numerous studies have shown that this compound(SMILES:[Cl-][Pt+2]([N]1=CC=CC=C1)([Cl-])[N]2=CC=CC=C2), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem