Downstream synthetic route of 22990-19-8

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

22990-19-8, 1-Phenyl-1,2,3,4-tetrahydroisoquinoline is a tetrahydroisoquinoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,22990-19-8

General procedure: The asymmetric transfer hydrogenation reactions were performed according to a previously reported procedure. A round bottom flask was equipped with a magnetic stirrer bar and was pre-heated on a water bath (30 C). Stock solutions of the substrates and catalyst were prepared. The amounts of reaction components were calculated in order to fulfill the following ratios: S/Cratio = 100, HCOOH/triethylamine ratio = 2.5, concentration = 7.0%(defined as: (mass of substrate + mass of catalyst + mass of formic acid + mass of triethylamine)/mass of solvent), hydrogenation mixture/substrate ratio = 8.83, total volume of reaction mixture = 2 mL (all ratios are molar). The components were transferred into the flask in the following order: acetonitrile, formic acid, triethylamine, solution of the catalyst. After five minutes, the calculated amount of the substrate solution containing 0.15 mmol of substrate was added into the reaction mixture. The samples were taken in defined time intervals. The samples were treated with a saturated solution of sodium carbonate (1 mL) and extracted three times with diethyl ether (3 1 mL). The extract was dried over sodium sulfate, filtered,and stripped in a stream of argon. The residue was dissolved in 600 muL of acetonitrile and analyzed via GC. After the addition of 20 muL triethylamine and 10 muL of ()-(R)-menthyl chloroformate,the enantioselectivity could be determined.

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

Reference£º
Article; ot, Petr; Vilhanov, Beta; Pechek, Jan; Vclavk, Ji; Zpal, Jakub; Kuzma, Marek; Kaer, Petr; Tetrahedron Asymmetry; vol. 25; 18-19; (2014); p. 1346 – 1351;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Simple exploration of 22990-19-8

22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

22990-19-8, 1-Phenyl-1,2,3,4-tetrahydroisoquinoline is a tetrahydroisoquinoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

22990-19-8, compound VIII 10.5g added to 105.0 ml anhydrous ethanol, adding (S) – (+)-tartaric acid 75.1g heating to reflux reaction 0.5h, then lowering the temperature to the system for 10-20 C crystallization, filtering to obtain solid; the solid using 20 ml of pure water refining, I of the obtained compound (S) – (+)-tartrate. 7. 5g, yield 42.0%.

22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

Reference£º
Patent; SHANDONG JINCHENG MEDICAL AND CHEMICAL CO., LTD; Sun, bin; Zhao, chengbiao; Ma, qingshuang; Wang, xiaoguang; (7 pag.)CN105541712; (2016); A;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

New learning discoveries about 22990-19-8

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22990-19-8,1-Phenyl-1,2,3,4-tetrahydroisoquinoline,as a common compound, the synthetic route is as follows.,22990-19-8

Optically active (S)-mandelic acid (0.5 equiv) was added to the solution of racemic compound 5 (1.0 equiv) in mixture of toluene and methanol solvents at room temperature. The resulting suspension was stirred at 80 C to make homogeneous reaction mixture. The stirring was continued with heating at 80 C until completion of reaction. It was found that after 30 min the reaction was completed. The solution was allowed to cool to room temperature. Mandelic acid resolves diastereomeric mixture to S-form of 5, which was filtered from the solution. The filter cake was washed once with toluene and air-dried to yield compound 6 (S-form) as a white solid in 47 % yield. Compound 6 was treated with 2 M Sodium hydroxide solution and the toluene was added. Two layers were separated. Toluene fraction was dried over anhydrous Na2SO4, concentrated and purified on silica gel column (eluted using mixture of hexane and ethyl acetate) to obtain pure S-isomer.

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

Reference£º
Article; Krishna Rao; Surendra Babu; Basaveswara Rao; Keshavi; Sundara Rao; Eswara Prasad; Murthy; Asian Journal of Chemistry; vol. 29; 5; (2017); p. 1035 – 1038;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some tips on 22990-19-8

22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22990-19-8,1-Phenyl-1,2,3,4-tetrahydroisoquinoline,as a common compound, the synthetic route is as follows.,22990-19-8

The obtained 6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (1.50 mmol) And a THF solution (20 ml) of 3-phenylethyl isocyanate (1.12 mmol) Was stirred at 40-45 C until the reaction was complete. The reaction mixture was diluted with 1N HCl solution and After partitioning with water, the organic layer was extracted with ethyl acetate. After evaporation of the solvent Column chromatography (EA: hexane) gave the title compound.

22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

Reference£º
Patent; The Industry & Academic Cooperation in Chungnam National University (IAC); Jung, Sang-Hun; Woo, Sun-Hee; Kim, Sang- Kyum; Jeon, Eun-Seok; Lee, Yu-Jung; Meunikam, Manoj; Jalani, Hiteshkumar; Sharma, Niti; (205 pag.)KR2016/108281; (2016); A;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some tips on 22990-19-8

22990-19-8, 22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22990-19-8,1-Phenyl-1,2,3,4-tetrahydroisoquinoline,as a common compound, the synthetic route is as follows.

General procedure: Pd/C (254 mg, 0.12 mmol) and K3PO4*3H2O (16 mg, 0.06mmol) were placed in a Schlenk tube followed by acetonitrile(1 mL), and the resulting mixture was stirred at room temperaturefor 10 min. A solution of 1-substituted-1,2,3,4- tetrahydroisoquinoline(0.30 mmol) in acetonitrile (4 mL) was thenadded to the reaction mixture, and the Schlenk tube was carefullyand quickly vacuum purged before being filled with oxygenusing an oxygen balloon. The reaction mixture was thenstirred at 60 C until the 1-substituted-1,2,3,4- tetrahydroisoquinolinehad been completely consumed (as determined byTLC analysis). Upon completion of the reaction, the mixturewas slowly cooled to room temperature and filtered throughdiatomite to remove the Pd/C catalyst. The filtrate was thenconcentrated in vacuo to give the crude product as a residue,which was purified by flash chromatography over silica geleluting with petroleum ether and ethyl acetate to give the imineproduct 2. 1-Phenyl-3,4-dihydroisoquinoline (2a): 86% yield, known compound [ 54 ], yellow oil, Rf = 0.75 (ethyl acetate). 1H NMR (400 MHz, CDCl3) delta = 7.60-7.56 (m, 2H), 7.44-7.35 (m, 4H), 7.26-7.21 (m, 3H), 3.85-3.82 (m, 2H), 2.80-2.77 (m, 2H); 13C NMR (100 MHz, CDCl3) delta = 167.3, 139.0, 138.9, 130.7, 129.3, 128.9, 128.8, 128.1, 127.9, 127.4, 126.6, 47.7, 26.3.

22990-19-8, 22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

Reference£º
Article; Ji, Yue; Chen, Mu-Wang; Shi, Lei; Zhou, Yong-Gui; Cuihua Xuebao/Chinese Journal of Catalysis; vol. 36; 1; (2015); p. 33 – 39;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Simple exploration of 22990-19-8

22990-19-8, 22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

22990-19-8, 1-Phenyl-1,2,3,4-tetrahydroisoquinoline is a tetrahydroisoquinoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of a compound 3-benzylaza-bicyclo[3.1.0]hexan-6-amine (0.2 g, 0.001 mol) [prepared following the procedure as described in Synlett, 1097-1102 (1996)] in acetonitrile (10 ml), was added p-nitrophenyl chloroformate (0.216 g, 0.001 mol) and triethylamine (0.214 g, 0.00212 mol). The resulting reaction mixture was stirred at room temperature for 3 hours followed by the addition of 1 -phenyl- 1,2,3, 4- tetrahydroisoquinoline (0.2 Ig, 0.001 mol). The reaction mixture was refluxed for 12 hours followed by cooling it to room temperature. The contents of the reaction mixture were poured into water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography using ethyl acetate and hexane solvent mixture to furnish the title compound. Yield: 0.11 g.1H NMR (CDCl3): 7.37-7.06 (m, 14H), 6.30 (s, IH), 4.84 (bs, IH), 3.58 (s, 2H), 3.56-3.49 (m, 2H), 3.11-2.74 (m, 7H), 1.26 (s, 2H); IR (DCM): 1622 cm”1

22990-19-8, 22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

Reference£º
Patent; RANBAXY LABORATORIES LIMITED; WO2006/35280; (2006); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some tips on 22990-19-8

22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22990-19-8,1-Phenyl-1,2,3,4-tetrahydroisoquinoline,as a common compound, the synthetic route is as follows.,22990-19-8

Racemic mixture of 1 -phenyl- 1, 2,3, 4-tetrahydroisoquinoline (40 g, 191 mmol) and D-(-)-tartaric acid (28.61 g, 191 mmol, ee 99%) are suspended in methanol (240 niL). The solution is heated to reflux, until the whole amount of solid is completely dissolved. The heating bath is being removed and to the clear solution water (120 mL) is added; the resulting mixture is left at ambient temperature (240C) for 24 h. Crystalline solid is filtered off (21.45 g). -17.02 (c=l%, H2O).Obtained crystalline solid is suspended in the mixture of 10% NaOHaq (120 mL) and ethyl acetate (50 mL), the solution is stirred at ambient temperature (240C) for about 10 min. until the whole amount of solid is dissolved. The reaction mixture is transferred into separatory flask, organic layer is separated and water phase is extracted with ethyl acetate (2×30 mL). Combined organic extracts are washed with water (1×40 mL), dried and condensed under vacuum to dryness. (S)-1-Phenyl- 1,2,3, 4-tetrahydroisoquinoline is obtained as crystalline solid (12 g, 30%), of enantiomeric excess ee = 100%. Chemical purity (HPLC): 99.96%; [alpha]25D = 38.20 (c=l%, CH2Cl2).

22990-19-8 1-Phenyl-1,2,3,4-tetrahydroisoquinoline 100137, atetrahydroisoquinoline compound, is more and more widely used in various fields.

Reference£º
Patent; ZAKLADY FARMACEUTYCZNE POLPHARMA SA; WO2009/142521; (2009); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Analyzing the synthesis route of 22990-19-8

The synthetic route of 22990-19-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22990-19-8,1-Phenyl-1,2,3,4-tetrahydroisoquinoline,as a common compound, the synthetic route is as follows.,22990-19-8

1.98 g (2.0 mmol) of PS carbodiimide resin were added to a solution of 209 mg (1.0 mmol) of 1-phenyl-1,2,3,4-tetrahydroisoquinoline and 275 mg (1.0 mmol) of 4-oxo-4-(3-(trifluoromethyl)benzylamino)butyric acid (intermediate VVV01) in a mixture of DCM and DMF (82 ml, 40:1 vv) and the mixture was shaken for 16 h at RT. Then the resin was filtered off and it was washed with DCM and MeOH. The filtrate was concentrated to small volume under vacuum. Column chromatography (DCM/EtOH 40:1) of the residue produced 287 mg (0.6 mmol, 62%) of 4-oxo-4-(1-phenyl-3,4-dihydroisoquinolin-2(1H)-yl)-N-(3-(trifluoromethyl)benzyl)butyric acid amide. MS: m/z 467.2 [M+H]+.

The synthetic route of 22990-19-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GRUNENTHAL GMBH; US2010/152234; (2010); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Downstream synthetic route of 22990-19-8

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

22990-19-8, 1-Phenyl-1,2,3,4-tetrahydroisoquinoline is a tetrahydroisoquinoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,22990-19-8

A THF solution (20 ml) of 6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (1.50 mmol) and 3-phenylethyl isocyanate (1.12 mmol) 40-45 C; until the reaction was complete. The reaction mixture was partitioned between 1N HCl solution and water, and the organic layer was extracted with ethyl acetate. Evaporation of the solvent followed by column chromatography (EA: hexane) gave the title compound.

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

Reference£º
Patent; CHUNGNAM NATIONAL UNIVERSITY INDUSTRY & ACADEMIC COOPERATION (IAC); JUNG, SANG HUN; WOO, SUN HEE; KIM, SANG KYUM; JEON, EUN SEOK; LEE, YOU JUNG; MANICKAM, MANOJ; JALANI HITESHKUMAR, HITESHKUMAR; SHARMA, NITI; (234 pag.)KR2015/111825; (2015); A;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

New learning discoveries about 22990-19-8

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22990-19-8,1-Phenyl-1,2,3,4-tetrahydroisoquinoline,as a common compound, the synthetic route is as follows.,22990-19-8

REFERENCE EXAMPLE 1 To a 130 ml dichloromethane solution containing 6.28 g of 1-phenyl-1,2,3,4-tetrahydroisoquinoline and 3.34 g of triethylamine, 3.1 ml of ethyl chloroformate was added dropwise under ice-cooling, followed by stirring at room temperature overnight. The reaction solution was washed successively with water, 1N hydrochloric acid, water and brine and then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure, thereby 10.58 g of ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate was obtained as pale yellow oil. Infrared absorption spectrum numax(neat)cm-1: 1700, 1430, 1296, 1230, 1122. Nuclear magnetic resonance spectrum (CDCl3, TMS internal standard); delta: 1.29 (3H, t, J=7.3 Hz), 2.75-3.45 (3H, m), 3.90-4.40 (1H, m), 4.21 (2H, q, J=7.3 Hz), 6.38 (1H, s), 6.95-7.45 (9H, m).

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

Reference£º
Patent; Yamanouchi Pharmaceutical Co., Ltd.; US6017927; (2000); A;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem