Peter, Antal’s team published research in Journal of Chromatography A in 1998 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.SDS of cas: 152286-30-1 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Peter, Antal; Torok, Gabriella; Toth, Geza; Van Den Nest, Wim; Laus, Georges; Tourwe, Dirk published an article on February 27 ,1998. The article was titled 《Chromatographic methods for monitoring the optical isomers of unusual aromatic amino acids》, and you may find the article in Journal of Chromatography A.SDS of cas: 152286-30-1 The information in the text is summarized as follows:

Unusual aromatic amino acids (phenylalanine, tyrosine and tryptophan analogs, and analogs containing tetraline, 1,2,3,4-tetrahydroisoquinoline or 1,2,3,4-tetrahydro-2-carboline skeletons) were synthesized in racemic or chiral form. The enantiomers of these unusual aromatic amino acids were separated by different chromatog. methods. The gas chromatog. analyses were based on separation on a Chirasil-L-Val column, using N-trifluoroacetyl-iso-Bu esters of amino acids, while HPLC was carried out either on a Crownpak CR(+) chiral column, or on an achiral column for the separation of diastereomeric derivatives formed with 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide or 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate. In the part of experimental materials, we found many familiar compounds, such as (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1SDS of cas: 152286-30-1)

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.SDS of cas: 152286-30-1 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Peter, Antal’s team published research in Journal of Chromatography A in 1998 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Recommanded Product: 152286-30-1 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Peter, Antal; Torok, Gabriella; Toth, Geza; Van Den Nest, Wim; Georges Laus; Tourwe, Dirk published an article on February 27 ,1998. The article was titled 《Chromatographic methods for monitoring the optical isomers of unusual aromatic amino acids》, and you may find the article in Journal of Chromatography A.Recommanded Product: 152286-30-1 The information in the text is summarized as follows:

Unusual aromatic amino acids (phenylalanine, tyrosine and tryptophan analogs, and analogs containing tetraline, 1,2,3,4-tetrahydroisoquinoline or 1,2,3,4-tetrahydro-2-carboline skeletons) were synthesized in racemic or chiral form. The enantiomers of these unusual aromatic amino acids were separated by different chromatog. methods. The gas chromatog. analyses were based on separation on a Chirasil-L-Val column, using N-trifluoroacetyl-iso-Bu esters of amino acids, while HPLC was carried out either on a Crownpak CR(+) chiral column, or on an achiral column for the separation of diastereomeric derivatives formed with 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide or 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate. The experimental part of the paper was very detailed, including the reaction process of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1Recommanded Product: 152286-30-1)

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Recommanded Product: 152286-30-1 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Peter, Antal’s team published research in Journal of Chromatography A in 1998 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.COA of Formula: C10H11NO3 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Peter, Antal; Torok, Gabriella; Armstrong, Daniel W. published an article on January 16 ,1998. The article was titled 《High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase》, and you may find the article in Journal of Chromatography A.COA of Formula: C10H11NO3 The information in the text is summarized as follows:

A glycopeptide antibiotic, teicoplanin, was used as chiral stationary phase for the HPLC separation of enantiomers of >30 unnatural amino acids, such as phenylalanine and tyrosine analogs and analogs containing 1,2,3,4-tetrahydroisoquinoline, tetraline, 1,2,3,4-tetrahydro-2-carboline, cyclopentane, cyclohexane, cyclohexene, bicyclo[2.2.1]heptane or heptene skeletons. Excellent resolutions were achieved for most of the studied compounds by using a hydro-organic mobile-phase system. The effects of organic modifier content, temperature and flow-rate on the resolution were studied and the conditions of separation were optimized. In the experiment, the researchers used (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1COA of Formula: C10H11NO3)

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.COA of Formula: C10H11NO3 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Peter, Antal’s team published research in Journal of Chromatography A in 2002 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Quality Control of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Quality Control of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acidOn March 1, 2002, Peter, Antal; Vekes, Erika; Toth, Geza; Tourwe, Dirk; Borremans, Frans published an article in Journal of Chromatography A. The article was 《Application of a new chiral derivatizing agent to the enantioseparation of secondary amino acids》. The article mentions the following:

A new chiral derivatizing agent, (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester, (S)-NIFE, was applied for the HPLC separation of enantiomers of 19 unnatural secondary amino acids: proline, pipecolic acid analogs, piperazine-2-carboxylic acid, morpholine-3-carboxylic acid, thiomorpholine-3-carboxylic acid and analogs containing the 1,2,3,4-tetrahydroisoquinoline, 1,2,3,4-tetrahydronorharmane, 1,2,3,4-tetrahydro-2-carboline and 2-benzazepine skeletons. Excellent resolutions were achieved for most of the studied compounds by using a reversed-phase mobile phase system. The conditions of separation were optimized by variation of the mobile phase composition In the part of experimental materials, we found many familiar compounds, such as (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1Quality Control of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid)

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Quality Control of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Peter, Antal’s team published research in Journal of Chromatography A in 1994 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Application In Synthesis of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Application In Synthesis of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acidOn May 13, 1994 ,《Monitoring of optical isomers of some conformationally constrained amino acids with tetrahydroisoquinoline or tetraline ring structures》 appeared in Journal of Chromatography A. The author of the article were Peter, Antal; Toth, Geza; Tourwe, Dirk. The article conveys some information:

Conformationally constrained amino acids were synthesized in optically pure or racemic forms: D- and L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, its erythro-D,L-4-Me analog, D- and L-1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid, D- and L-1,2,3,4-tetrahydro-7-hydroxy-6,8-dibromo- and -6,8-diiodoisoquinoline-3-carboxylic acid and D,L-6-hydroxy-2-aminotetraline-2-carboxylic acid. A method was developed for the separation and identification of optical isomers using precolumn derivatization with chiral derivatization reagents: 1-fluoro-2,4-dinitrophenyl-4-L-alaninamide and 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate. The effects of pH, eluent composition and different buffers on the separation were also investigated. In the experiment, the researchers used (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1Application In Synthesis of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid)

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Application In Synthesis of (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Peter, A.’s team published research in Journal of Chromatography A in 2000 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.SDS of cas: 152286-30-1 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Peter, A.; Torok, G.; Armstrong, D. W.; Toth, G.; Tourwe, D. published their research in Journal of Chromatography A on December 22 ,2000. The article was titled 《High-performance liquid chromatographic separation of enantiomers of synthetic amino acids on a ristocetin A chiral stationary phase》.SDS of cas: 152286-30-1 The article contains the following contents:

A macrocyclic glycopeptide, ristocetin A, was used as chiral stationary phase for the HPLC separation of enantiomers of 28 unnatural amino acids, such as analogs of phenylalanine, tyrosine and tryptophan, and analogs containing 1,2,3,4-tetrahydroisoquinoline, tetraline or 1,2,3,4-tetrahydro-2-carboline skeletons. Excellent resolutions were achieved for most of the studied compounds by using reversed-phase or a new polar-organic mobile phase system. The conditions of separation were optimized by variation of the mobile phase composition, temperature and flow-rate. In the experiment, the researchers used (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1SDS of cas: 152286-30-1)

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.SDS of cas: 152286-30-1 It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Ansari, Monish Arbaz’s team published research in Organic Letters in 2022 | CAS: 799274-06-9

7-Fluoro-1,2,3,4-tetrahydroisoquinoline hydrochloride(cas: 799274-06-9) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Application In Synthesis of 7-Fluoro-1,2,3,4-tetrahydroisoquinoline hydrochloride It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

《[2+3] Annulative Coupling of Tetrahydroisoquinolines with Aryliodonio diazo compounds To Access 1,2,4-Triazolo[3,4-a]isoquinolines》 was written by Ansari, Monish Arbaz; Khan, Shahnawaz; Ray, Subhasish; Shukla, Gaurav; Singh, Maya Shankar. Application In Synthesis of 7-Fluoro-1,2,3,4-tetrahydroisoquinoline hydrochloride And the article was included in Organic Letters on August 19 ,2022. The article conveys some information:

Base promoted one-pot annulative coupling of 1,2,3,4-tetrahydroisoquinolines (THIQs) with hypervalent iodine(III) species aryliodonio diazo compounds I (R = COOEt, COOtBu, COOBn, menthyl) has been devised for the direct construction of 1,2,4-triazolo[3,4-a]isoquinoline derivatives II (R = COOEt, COOtBu, COOBn, menthyl; R1 = H, 7-Me, 9-F, etc.) at room temperature in open air for the first time. This approach involves [2+3] cascade annulation of nucleophilic THIQ with an electrophilic aryliodonio diazo compound via N-H and α-C1(sp3)-H difunctionalization of THIQ. In the experiment, the researchers used many compounds, for example, 7-Fluoro-1,2,3,4-tetrahydroisoquinoline hydrochloride(cas: 799274-06-9Application In Synthesis of 7-Fluoro-1,2,3,4-tetrahydroisoquinoline hydrochloride)

7-Fluoro-1,2,3,4-tetrahydroisoquinoline hydrochloride(cas: 799274-06-9) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Application In Synthesis of 7-Fluoro-1,2,3,4-tetrahydroisoquinoline hydrochloride It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Remsburg, Jeffrey W.’s team published research in Journal of Liquid Chromatography & Related Technologies in 2008 | CAS: 152286-30-1

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Recommanded Product: (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

The author of 《LC enantiomeric separation of unusual amino acids using cyclodextrin-based stationary phases》 were Remsburg, Jeffrey W.; Armstrong, Daniel W.; Peter, Antal; Toth, Geza. And the article was published in Journal of Liquid Chromatography & Related Technologies in 2008. Recommanded Product: (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid The author mentioned the following in the article:

The use of cyclodextrin based stationary phases was studied for the enantiomeric separation of 20 unusual amino acids. Mobile phase, pH effects, and flow rate were optimized for each separation Separations were limited to aqueous mobile phases. Nineteen of the amino acids were separated, with seven having a resolution ≥1.5. The highest selectivities came from the alpha, acetylated beta, and 2,6-dinitrophenyl-4-trifluoromethylphenyl derivitized beta-cyclodextrin stationary phases. Amino acids containing a 1,2,3,4 tetrahydroisoquinoline carboxylic acid structure showed great compatibility with the acetylated beta-cyclodextrin. Tyrosine analogs, due to lack of retention, were not well suited to the cyclodextrin stationary phases. In addition to this study using (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, there are many other studies that have used (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1Recommanded Product: (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) was used in this study.

(R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(cas: 152286-30-1) belongs to tetrahydroisoquinoline. Tetrahydroisoquinoline Reactions: As a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids.Recommanded Product: (R)-7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid It can be dehydrogenated to give isoquinoline and hydrogenated to decahydroisoquinoline. Like other secondary amines, tetrahydroisoquinoline can be oxidized to the corresponding nitrone using hydrogen peroxide, catalyzed by selenium dioxide.

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem