Vilums, Maris et al. published their research in ChemMedChem in 2015 | CAS: 220247-87-0

7-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 220247-87-0) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline motif is often present in natural products with a broad range of biological and pharmacological activities. Among them, 1-substituted tetrahydroisoquinolines are privileged scaffolds in drugs and pharmaceuticals. Arene/Ru/TsDPEN complexes bearing a heterocyclic group catalyze the asymmetric transfer hydrogenation (ATH) of 1-aryl dihydroisoquinolines (DHIQs) to provide tetrahydroisoquinolines of high enantiomeric excess.Computed Properties of C10H11ClF3N

Evaluation of (4-Arylpiperidin-1-yl)cyclopentanecarboxamides as high-affinity and long-residence-time antagonists for the CCR2 receptor was written by Vilums, Maris;Zweemer, Annelien J. M.;Dilanchian, Arian;van Veldhoven, Jacobus P. D.;de Vries, Henk;Brussee, Johannes;Saunders, John;Stamos, Dean;Heitman, Laura H.;IJzerman, Adriaan P.. And the article was included in ChemMedChem in 2015.Computed Properties of C10H11ClF3N This article mentions the following:

Animal models suggest that the chemokine ligand 2/CC-chemokine receptor 2 (CCL2/CCR2) axis plays an important role in the development of inflammatory diseases. However, CCR2 antagonists have failed in clin. trials because of a lack of efficacy. We previously described a new approach for the design of CCR2 antagonists by the use of structure-kinetics relationships (SKRs). Herein we report new findings on the structure-affinity relationships (SARs) and SKRs of the reference compound MK-0483, its diastereomers, and its structural analogs as CCR2 antagonists. The SARs of the 4-arylpiperidine group suggest that lipophilic hydrogen-bond-accepting substituents at the 3-position are favorable. However, the SKRs suggest that a lipophilic group with a certain size is desired [e.g., 3-Br: Ki=2.8 nΜ, residence time (tres)=243 min; 3-iPr: Ki=3.6 nΜ, tres=266 min]. Alternatively, addnl. substituents and further optimization of the mol., while keeping a carboxylic acid at the 3-position, can also prolong tres; this was most prominently observed in MK-0483 (Ki=1.2 nΜ, tres=724 min) and a close analog (Ki=7.8 nΜ) with a short residence time. In the experiment, the researchers used many compounds, for example, 7-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 220247-87-0Computed Properties of C10H11ClF3N).

7-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 220247-87-0) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline motif is often present in natural products with a broad range of biological and pharmacological activities. Among them, 1-substituted tetrahydroisoquinolines are privileged scaffolds in drugs and pharmaceuticals. Arene/Ru/TsDPEN complexes bearing a heterocyclic group catalyze the asymmetric transfer hydrogenation (ATH) of 1-aryl dihydroisoquinolines (DHIQs) to provide tetrahydroisoquinolines of high enantiomeric excess.Computed Properties of C10H11ClF3N

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Grunewald, Gary L. et al. published their research in Journal of Medicinal Chemistry in 1999 | CAS: 220247-87-0

7-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 220247-87-0) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline, as a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids. Because of the high biological relevance of compounds possessing the 1,2,3,4-tetrahydroisoquinoline framework, a large number of synthetic approaches towards the creation of an isoquinoline or 1,2,3,4-tetrahydroisoquinoline core are presently known. However, synthetic routes to tetrahydroisoquinoline derivatives containing fluorine atom(s) in their structure are not particularly abundant.Electric Literature of C10H11ClF3N

Synthesis, Biochemical Evaluation, and Classical and Three-Dimensional Quantitative Structure-Activity Relationship Studies of 7-Substituted-1,2,3,4-tetrahydroisoquinolines and Their Relative Affinities toward Phenylethanolamine N-Methyltransferase and the 伪2-Adrenoceptor was written by Grunewald, Gary L.;Dahanukar, Vilas H.;Jalluri, Ravi K.;Criscione, Kevin R.. And the article was included in Journal of Medicinal Chemistry in 1999.Electric Literature of C10H11ClF3N This article mentions the following:

7-Substituted-1,2,3,4-tetrahydroisoquinolines (7-substituted-THIQs) are potent inhibitors of phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28), the enzyme involved in the biosynthesis of epinephrine. Unfortunately, most of these compounds also exhibit strong affinity for the 伪2-adrenoceptor. To design a selective (PNMT vs 伪2-adrenoceptor affinity) inhibitor of PNMT, the steric and electrostatic factors responsible for PNMT inhibitory activity and 伪2-adrenoceptor affinity were investigated by evaluating a number of 7-substituted-THIQs. A classical quant. structure-activity relationship (QSAR) study resulted in a three-parameter equation for PNMT (PNMT pKi = 0.599蟺 – 0.0725MR + 1.55蟽m + 5.80; n = 27, r = 0.885, s = 0.573) and a three-parameter equation for the 伪2-adrenoceptor (伪2 pKi = 0.599蟺 – 0.0542MR – 0.951蟽m + 6.45; n = 27, r = 0.917, s = 0.397). These equations indicated that steric effects and lipophilicity play a similar role at either active site but that electronic effects play opposite roles at either active site. Two binding orientations for the THIQs were postulated such that lipophilic and hydrophilic 7-substituents would not occupy the same region of space at either binding site. Using these two binding orientations, based on the lipophilicity of the 7-substituent, comparative mol. field anal. (CoMFA) models were developed that showed that the steric and electrostatic interactions at both sites were similar to those previously elaborated in the QSAR analyses. Both the QSAR and the CoMFA analyses showed that the steric interactions are similar at the PNMT active site and at the 伪2-adrenoceptor and that the electrostatic interactions were different at the two sites. This difference in electrostatic interactions might be responsible for the selectivity of THIQs bearing a nonlipophilic electron-withdrawing group at the 7-position. These QSAR and CoMFA results will be useful in the design of potent and selective (PNMT vs 伪2-adrenoceptor affinity) inhibitors of PNMT. In the experiment, the researchers used many compounds, for example, 7-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 220247-87-0Electric Literature of C10H11ClF3N).

7-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride (cas: 220247-87-0) belongs to tetrahydroisoquinoline derivatives. Tetrahydroisoquinoline, as a secondary amine, tetrahydroisoquinoline has weakly basic properties and forms salts with strong acids. Because of the high biological relevance of compounds possessing the 1,2,3,4-tetrahydroisoquinoline framework, a large number of synthetic approaches towards the creation of an isoquinoline or 1,2,3,4-tetrahydroisoquinoline core are presently known. However, synthetic routes to tetrahydroisoquinoline derivatives containing fluorine atom(s) in their structure are not particularly abundant.Electric Literature of C10H11ClF3N

Referemce:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem