Chemical Research in 1452-77-3

In some applications, this compound(1452-77-3)Application of 1452-77-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Application of 1452-77-3. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Appraisal of Ruthenium(II) complexes of (4-phenoxyphenylazo) ligands for the synthesis of primary amides by dint of hydroxylamine hydrochloride and aldehydes. Author is Vinoth, Govindasamy; Indira, Sekar; Bharathi, Madheswaran; Sounthararajan, Muniyan; Sakthi, Dharmalingam; Bharathi, Kuppannan Shanmuga.

A new family of O, N donor-functionalized (4-phenoxyphenylazo)-2-naphthol/4-substituted phenol-based ligands (HL1-HL4) has been synthesized. The prepared ligands were successfully utilized for the access of a series of ruthenium(II) carbonyl complexes of the type [Ru(L)Cl(CO)(EPh3)3] (E = phosphine/arsine), (L = 1-(4-phenoxyphenylazo)-2-naphthol (HL1), 2-(4-phenoxyphenylazo)-4-chlorophenol (HL2), 2-(4-phenoxyphenylazo)-4-methylphenol (HL3) and 2-(4-phenoxyphenylazo)-4-methoxyphenol (HL4)). All of the ruthenium(II) carbonyl complexes and ligands have been fully characterized by FT-IR, UV-visible, 1H NMR, 31P NMR, mass spectrometry and CHN anal. The ligands have been analyzed by 13C NMR. The UV-visible spectroscopic study reveals that both the ligands and Ru(II) complexes exhibit excellent charge transfer transitions. This is the basic criteria for the oxidative amidation reaction, which is an influential strategy for the transformation of oxygenated organic compounds to the profitable amides. However, this catalytic process makes more impact on the application of new divalent ruthenium(II) azo compounds as catalyst in a single-pot conversion of aldehydes to amides in the presence of NaHCO3.

In some applications, this compound(1452-77-3)Application of 1452-77-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Interesting scientific research on 1452-77-3

In some applications, this compound(1452-77-3)Recommanded Product: 1452-77-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: Picolinamide(SMILESS: O=C(N)C1=NC=CC=C1,cas:1452-77-3) is researched.HPLC of Formula: 7661-33-8. The article 《Ruthenium(III) 2-(aminofluoreneazo)phenolate complexes: Synthesis, characterization, catalytic activity in amidation reaction and Fluorescence quenching studies》 in relation to this compound, is published in Journal of Organometallic Chemistry. Let’s take a look at the latest research on this compound (cas:1452-77-3).

Ru(III)2-(aminofluoreneazo)phenolate complexes [RuCl(PPh3)2(L1-5)] (1-5) (L = 2-(aminofluoreneazo)phenolate ligands) were synthesized. The characterization of the synthesized complexes was accomplished by elemental anal., spectroscopic (FTIR, UV-visible, Fluorescence and EPR) and ESI-MS techniques. The catalytic performance of one of the synthesized complexes 3 for the amidation of aldehyde in the presence of NaHCO3/NH2OH·HCl was evaluated. The fluorescence emission of [RuCl(PPh3)2(L2)] (2) and [RuCl(PPh3)2(L3) (3)] are effectively quenched by 1,4-benzoquinone and 1,4-naphthoquinone in MeCN medium.

In some applications, this compound(1452-77-3)Recommanded Product: 1452-77-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Discover the magic of the 1452-77-3

When you point to this article, it is believed that you are also very interested in this compound(1452-77-3)Recommanded Product: 1452-77-3 and due to space limitations, I can only present the most important information.

Recommanded Product: 1452-77-3. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Efficient dehydration of primary amides to nitriles catalyzed by phosphorus-chalcogen chelated iron hydrides. Author is Li, Kai; Sun, Hongjian; Yang, Wenjing; Wang, Yajie; Xie, Shangqing; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter.

A series of phosphorus-chalcogen chelated hydrido iron (II) complexes, (o-(R’2P)-p-R-C6H4Y)FeH(PMe3)3I (R = H, Me; R’ = iPr, Ph; Y = O, S, Se) were synthesized. The catalytic performances of I for dehydration of amides to nitriles were explored by comparing three factors: (1) different chalcogen coordination atoms Y; (2) R’ group of the phosphine moiety; (3) R substituent group at the Ph ring. It is confirmed that I (R = H; R’ = Ph; Y = S) with S as coordination atom has the best catalytic activity and I (R = H; R’ = Ph; Y = Se) with Se as coordination atom has the poorest catalytic activity among complexes I (R = H; R’ = Ph; Y = O), I (R = H; R’ = Ph; Y = S) and I (R = H; R’ = Ph; Y = Se). Electron-rich complex I (R = Me; R’ = iPr; Y = O) is the best catalyst among the seven complexes and the dehydration reaction was completed by using 2 mol% catalyst loading at 60° with 24 h in the presence of (EtO)3SiH in THF. Catalyst I (R = Me; R’ = iPr; Y = O) has good tolerance to many functional groups. Among the seven iron complexes, new complexes I (R = H, Me; R’ = iPr; Y = O) were obtained via the O-H bond activation of the preligands o-iPr2P(C6H4)OH and o-iPr2P-p-Me-(C6H4)OH by Fe(PMe3)4. Both I (R = H, Me; R’ = iPr; Y = O) were characterized by spectroscopic methods and X-ray diffraction anal. The catalytic mechanism was exptl. studied and also proposed.

When you point to this article, it is believed that you are also very interested in this compound(1452-77-3)Recommanded Product: 1452-77-3 and due to space limitations, I can only present the most important information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

The influence of catalyst in reaction 1452-77-3

When you point to this article, it is believed that you are also very interested in this compound(1452-77-3)Recommanded Product: 1452-77-3 and due to space limitations, I can only present the most important information.

Recommanded Product: 1452-77-3. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Activation of nitriles by silver(I) N-heterocyclic carbenes: An efficient on-water synthesis of primary amides. Author is Thirukovela, Narasimha Swamy; Balaboina, Ramesh; Kankala, Shravankumar; Vadde, Ravindhar; Vasam, Chandra Sekhar.

A first example of silver(I) N-heterocyclic carbene (Ag(I)-NHC) catalyzed on-water synthesis of primary amides by hydration of nitriles under mild reaction conditions was described. This organometallic catalytic system has excellent tolerance for various homo-aromatic, hetero-aromatic and aliphatic nitriles to afford primary amides in good yields in neat water.

When you point to this article, it is believed that you are also very interested in this compound(1452-77-3)Recommanded Product: 1452-77-3 and due to space limitations, I can only present the most important information.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some scientific research about 1452-77-3

In some applications, this compound(1452-77-3)SDS of cas: 1452-77-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

SDS of cas: 1452-77-3. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Bis-heteroleptic ruthenium(II) complex with 2-picolinamide: Synthesis, crystal structures, and spectroscopic study for anion recognition using the amide group. Author is Toyama, Mari; Fujii, Yudai; Endo, Mika.

Cis-[Ru(bpy)2(OH2)2](OTf)2 (1·(OTf)2; OTf- = CF3SO3-) was reacted with 2-picolinamide (H2pia) in EtOH to form bis-heteroleptic complex [Ru(bpy)2(H2pia)]X2 (2·X2; X- = OTf- or Cl-). Crystal structures of 2·X2 revealed that H2pia was coordinated to Ru(II) through N of pyridyl group and O of amide group to form the N,O-coordination, and acted as a neutral ligand. Bond distances around the amide group and 1H NMR study for 22+ suggested that π-electron on the carbonyl group was delocalized to the whole amide group. Adding F- to the acetonitrile solution of 2·(OTf)2 changed the red solution to dark-red due to the transportation of π-electron on the amide group by the bound F- to the amide H. Absorption and 1H NMR spectroscopies revealed that the NH2 of 22+ undergoes selective two-step adduct reaction with F-: the H close to pyridyl group of H2pia first formed a 1:1 adduct (mono-F-adduct-22+), followed by the other H forming the 1:2 adduct (di-F-adduct-22+). Adding excess Li(OTf) to these F-adduct-22+ solutions changed the dark-red solution back to red, suggesting that the adducted F- was removed by Li+ to form 22+ and LiF.

In some applications, this compound(1452-77-3)SDS of cas: 1452-77-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Introduction of a new synthetic route about 1452-77-3

Here is just a brief introduction to this compound(1452-77-3)Synthetic Route of C6H6N2O, more information about the compound(Picolinamide) is in the article, you can click the link below.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Thirukovela, Narasimha Swamy; Balaboina, Ramesh; Kankala, Shravankumar; Vadde, Ravindhar; Vasam, Chandra Sekhar researched the compound: Picolinamide( cas:1452-77-3 ).Synthetic Route of C6H6N2O.They published the article 《Activation of nitriles by silver(I) N-heterocyclic carbenes: An efficient on-water synthesis of primary amides》 about this compound( cas:1452-77-3 ) in Tetrahedron. Keywords: silver NHC catalyst preparation; nitrile silver NHC catalyst hydration; primary amide preparation. We’ll tell you more about this compound (cas:1452-77-3).

A first example of silver(I) N-heterocyclic carbene (Ag(I)-NHC) catalyzed on-water synthesis of primary amides by hydration of nitriles under mild reaction conditions was described. This organometallic catalytic system has excellent tolerance for various homo-aromatic, hetero-aromatic and aliphatic nitriles to afford primary amides in good yields in neat water.

Here is just a brief introduction to this compound(1452-77-3)Synthetic Route of C6H6N2O, more information about the compound(Picolinamide) is in the article, you can click the link below.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Get Up to Speed Quickly on Emerging Topics: 1452-77-3

Here is just a brief introduction to this compound(1452-77-3)Computed Properties of C6H6N2O, more information about the compound(Picolinamide) is in the article, you can click the link below.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands, published in 2020-05-11, which mentions a compound: 1452-77-3, Name is Picolinamide, Molecular C6H6N2O, Computed Properties of C6H6N2O.

A series of Ir catalysts [Cp*Ir(H2O)(QCXNHR)][SO4] (1-16; Q = 2-pyridyl, 4-hydroxy-2-pyridyl, 6-hydroxy-2-pyridyl, 2-imidazolyl, 1-pyrazolyl; X = O, S, NH; R = H, Me, Ph, 4-hydroxyphenyl) bearing amide-based ligands were isolated or generated in situ by a deprotonated amide moiety with the hypotheses that strong electron-donating ability of the coordinated anionic nitrogen atom and the proton-responsive OH group near the metal center will improve the catalytic activity for CO2 hydrogenation and formic acid (FA) dehydrogenation. The effects of the modifications of the ligand architecture on the catalytic activity were investigated for CO2 hydrogenation at ambient conditions (25° with 0.1 MPa H2/CO2 (volume/volume = 1/1)) and under slightly harsher conditions (50° with 1.0 MPa H2/CO2) in basic aqueous solutions together with deuterium kinetic isotope effects (KIEs) with selected catalysts. Complex [Cp*Ir(L12)(H2O)][HSO4] (12, L12 = 6-hydroxy-N-phenylpicolinamidate) that has an anionic coordinating N atom and an OH group in the second coordination sphere, exhibits a TOF of 198 h-1 based on the initial 1 h of reaction. This TOF which, to the best of our knowledge, is the highest value ever reported under ambient conditions in basic aqueous solutions However, complex [Cp*Ir(L10)(H2O)][HSO4] (L10 = 4-hydroxy-N-methylpicolinamidate) performs better in long-term CO2 hydrogenation (up to a TON of 14700 with [Ir] = 10μM after 348 h and the final formate concentration of 0.643 M with [Ir] = 250μM.) at ambient conditions. Further, the catalytic activity for FA dehydrogenation was examined under three different conditions (pH 1.6, 2.3 and 3.5). The complex 12 in any of these conditions is less active compared to the picolinamidate catalysts without ortho-OH, owing to its instability. Theor. calculations were performed to examine the catalytic mechanism, and a step-by-step mechanism has been proposed for both CO2 hydrogenation and FA dehydrogenation reactions. D. functional theory calculations of [Cp*Ir(L3)(H2O)][HSO4] (L3 = picolinamidate) and the X-ray structure of the [Cp*Ir(L7)(H)]•H2O (L7 = N-methylpicolinamidate) complex imply a pH-dependent conformational change from N,N coordination to N,O coordination upon lowering the pH of the aqueous solution

Here is just a brief introduction to this compound(1452-77-3)Computed Properties of C6H6N2O, more information about the compound(Picolinamide) is in the article, you can click the link below.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Chemical Properties and Facts of 61302-99-6

Here is just a brief introduction to this compound(61302-99-6)Application In Synthesis of D-Alanine methylamide hydrochloride, more information about the compound(D-Alanine methylamide hydrochloride) is in the article, you can click the link below.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: D-Alanine methylamide hydrochloride(SMILESS: N[C@H](C)C(NC)=O.[H]Cl,cas:61302-99-6) is researched.SDS of cas: 15227-42-6. The article 《Synthesis of stereoisomeric alanine containing peptide derivatives》 in relation to this compound, is published in Chemical & Pharmaceutical Bulletin. Let’s take a look at the latest research on this compound (cas:61302-99-6).

D-alanine derivatives and their stereoisomers and D-alanyl-D-alanine derivatives and their stereoisomers (R1-Ala-R2, R1-Ala-Ala-R2: R1 = PhCH2O2C, H; R2 = NHNH2, NHCH3, NHCH2CH2OH) were synthesized. All compounds obtained did not show antibacterial activity against Staphylococcus aureus, Sarcina lutea, Pseudomonas aeruginosa and Escherichia coli.

Here is just a brief introduction to this compound(61302-99-6)Application In Synthesis of D-Alanine methylamide hydrochloride, more information about the compound(D-Alanine methylamide hydrochloride) is in the article, you can click the link below.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Flexible application of in synthetic route 1452-77-3

Here is just a brief introduction to this compound(1452-77-3)Formula: C6H6N2O, more information about the compound(Picolinamide) is in the article, you can click the link below.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Silica supported potassium oxide catalyst for dehydration of 2-picolinamide to form 2-cyanopyridine, the main research direction is picolinamide cyanopyridine silica potassium oxide catalyst dehydration.Formula: C6H6N2O.

The dehydration of 2-picolinamide to produce 2-cyanopyridine was investigated thoroughly using silica supported potassium oxide as a heterogeneous catalyst. Both large sp. surface area and pore size of SiO2 (B) contributed to the favorable catalytic performance for the synthesis of 2-CP. In addition, the yield of 2-CP showed the linear relationship with the amounts of medium basicity of the catalysts, demonstrating that medium basic sites were the active sites of silica supported potassium oxide catalysts. The catalysts were further characterized by XRD and FT-IR to clarify the active species. The results indicated the Si-O-K group produced by the reaction of K2CO3 with Si-OH was the active species, which was further evidenced by the adjustment of the amount of Si-OH by silylation and hydroxylation procedure.

Here is just a brief introduction to this compound(1452-77-3)Formula: C6H6N2O, more information about the compound(Picolinamide) is in the article, you can click the link below.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some scientific research about 1452-77-3

Here is just a brief introduction to this compound(1452-77-3)SDS of cas: 1452-77-3, more information about the compound(Picolinamide) is in the article, you can click the link below.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Picolinamide, is researched, Molecular C6H6N2O, CAS is 1452-77-3, about Amidation of aldehydes using mono-cationic half-sandwich rhodium(III) complexes with functionalized phenylhydrazone ligands.SDS of cas: 1452-77-3.

A series of mono-cationic half-sandwich rhodium(III) complexes have been synthesized in methanol using phenylhydrazone-derived ligands (L1-L6) and the starting precursor [(η5-C5Me5)2Rh2(μ-Cl)2Cl2] in a 2:1 molar ratio. The N,N’-phenylhydrazone complexes have been isolated as tetraphenylborate salts. All complexes were characterized by elemental anal., FT-IR, UV-visible, NMR spectroscopy and mass spectrometry. The mol. structure of complex [(η5-C5Me5)Rh(L1)Cl](BPh4) (1) was confirmed by single-crystal X-ray structure anal. Complex [(η5-C5Me5)Rh(L3)Cl](BPh4) (3) was used as an efficient catalyst for the amide formation reaction, with up to 99% conversion after 2 h in toluene at 110 °C in the presence of hydroxyl amine hydrochloride and sodium bicarbonate.

Here is just a brief introduction to this compound(1452-77-3)SDS of cas: 1452-77-3, more information about the compound(Picolinamide) is in the article, you can click the link below.

Reference:
Tetrahydroisoquinoline – Wikipedia,
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem