Some tips on 6-Bromo-1,2,3,4-tetrahydroisoquinoline

With the complex challenges of chemical substances, we look forward to future research findings about 226942-29-6,belong tetrahydroisoquinoline compound

As a common heterocyclic compound, it belongs to tetrahydroisoquinoline compound, name is 6-Bromo-1,2,3,4-tetrahydroisoquinoline, and cas is 226942-29-6, its synthesis route is as follows.,226942-29-6

A mixture of 6-bromo-1 ,2,3,4-tetrahydroisoquinoline (2.86g, 12 mmol, Allichem LLC), zinc cyanide (1.76g, 15 mmol) and tetrakis(triphenylphosphine)palladium (0) (1.33g, 1.2 mmol) in DMF (20ml) was split between two microwave vials and heated (microwave) for 60min at 1300C. The mixture was concentrated in vacuo and the residue dissolved in DCM and loaded onto a silica cartridge. The cartridge was eluted with a gradient of 2M ammonia in methanol / DCM (5-10%). The appropriate fractions were combined and evaporated in vacuo to give 1 ,2,3,4-tetrahydro-6- isoquinolinecarbonitrile (1.41 g) as a colourless solid. LCMS (Method formate): Retention time 0.36min, MH+ = 158

With the complex challenges of chemical substances, we look forward to future research findings about 226942-29-6,belong tetrahydroisoquinoline compound

Reference£º
Patent; GLAXO GROUP LIMITED; BAILEY, James, Matthew; BIT, Rino, Antonio; DEMONT, Emmanuel, Hubert; HARRISON, Lee, Andrew; JONES, Katherine, Louise; SMETHURST, Christian, Alan, Paul; WITHERINGTON, Jason; WO2010/146105; (2010); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some tips on 6-Bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride

With the complex challenges of chemical substances, we look forward to future research findings about 215798-19-9,belong tetrahydroisoquinoline compound

As a common heterocyclic compound, it belongs to tetrahydroisoquinoline compound, name is 6-Bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride, and cas is 215798-19-9, its synthesis route is as follows.,215798-19-9

Reference DSynthesis of 6-bromo-2-(4-chloro- 1 ,3 ,5-triazin-2-yl)- 1 ,2,3 , 4-tetrahydroisoquino line2,4-Dichloro-l,3,5-triazine (2.01 g, 12.7 mmol) was dissolved in 10 mL of dry DMF and the solution was cooled to 0 C. To this solution was added N,N-diisopropylethylamine, (6.65 mL, 38.2 mmol) and 6-bromo-l, 2,3, 4-tetrahydroisoquino line hydrochloride (3.26 g, 12.7 mmol). The resulting reaction mixture was stirred at 0 C to RT for 1.5 h. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc. The organics were dried with MgS04, filtered and concentrated under reduced pressure. The crude material obtained was purified with medium pressure silica gel chromatography using gradient eluent, 0-40%> EtOAc in hexanes to afford 6-bromo-2-(4-chloro-l,3,5-triazin-2-yl)-l,2,3,4-tetrahydroisoquinoline (1.90 g, 46% yield) as white solid.

With the complex challenges of chemical substances, we look forward to future research findings about 215798-19-9,belong tetrahydroisoquinoline compound

Reference£º
Patent; AMGEN INC.; BREGMAN, Howard; BUCHANAN, John, L.; CHAKKA, Nagasree; DIMAURO, Erin, F.; DU, Bingfan; NGUYEN, Hanh, Nho; ZHENG, Xiao, Mei; WO2011/103196; (2011); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Application of 7-Bromophthalazin-1(2H)-one

215798-14-4, As the rapid development of chemical substances, we look forward to future research findings about 215798-14-4

A common heterocyclic compound, the tetrahydroisoquinoline compound, name is 6-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride,cas is 215798-14-4, mainly used in chemical industry, its synthesis route is as follows.

Step B: N-[2-Chloro-6-methyl-4-(6-trifluoromethyl-3,4-dihydro-1H-isoquinolin-2-yl)-phenyl]-3,3-dimethylbutanamide Bis(dibenzylidineacetone)palladium (2 mg, 0.0035 mmol) and (2′-dicyclohexyl phosphanyl-biphenyl-2-yl)-dimethylamine (3.3 mg, 0.0084 mmol) were added to dry toluene (10 mL purged with argon) and stirred for 15 minutes under argon. Potassium tert-butoxide (197 mg, 1.75 mmol), 6-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline hydrochloride salt (154 mg, 0.65 mmol) and N-(4-bromo-2-chloro-6-methyphenyl)-3,3-dimethylbutanamide (200 mg, 0.63 mmol) were then added and the reaction mixture was stirred at 90 C. overnight. The reaction mixture was then cooled to room temperature, concentrated and purified by thin layer chromatography (dichloromethane:methanol 5%) to afford the title compound as a solid.1H NMR (DMSO-d6, 400 MHz) delta 1.08 (s, 9H), 2.17 (s, 3H), 2.21 (s, 2H), 3.0 (t, J=5.25 Hz, 2H), 3.6 (t, J=5.6 Hz, 2H), 4.5 (s, 2H), 6.9 (s, 1H), 6.95 (s, 1H), 7.3 (m, 1H), 7.5 (m, 2H), 9.13 (s, 1H).

215798-14-4, As the rapid development of chemical substances, we look forward to future research findings about 215798-14-4

Reference£º
Patent; Valeant Pharmaceuticals North America; US2008/139610; (2008); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Downstream synthetic route of 22990-19-8

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

22990-19-8, 1-Phenyl-1,2,3,4-tetrahydroisoquinoline is a tetrahydroisoquinoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,22990-19-8

EXAMPLE 13 STR19 2-(Dichloroacetyl)-1-phenyl-1,2,3,4-tetrahydroisoquinoline By procedures described in Example 1 (Method A), phenethylamine and benzoyl chloride were converted to 1-phenyl-1,2,3,4-tetrahydroisoquinoline. A reaction vessel was charged with 3.5 g of this isoquinoline compound, 10 ml 10% sodium hydroxide and 50 ml methylene chloride. With this mixture stirred, 1.2 ml dichloroacetyl chloride was added dropwise to the mixture. The mixture was stirred for 10 minutes, then water was added. The organic extract was dried with magnesium sulfate and stripped of solvent. The residue was recrystallized from ethanol to provide 4 g of a white cubic-crystal product having the elemental analysis reported in Table I.

As the paragraph descriping shows that 22990-19-8 is playing an increasingly important role.

Reference£º
Patent; Monsanto Company; US4755218; (1988); A;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Application of 877861-62-6

As the rapid development of chemical substances, we look forward to future research findings about 877861-62-6

A common heterocyclic compound, the tetrahydroisoquinoline compound, name is Methyl 1,2,3,4-tetrahydroisoquinoline-6-carboxylate hydrochloride,cas is 877861-62-6, mainly used in chemical industry, its synthesis route is as follows.

877861-62-6, Ester 6-17 (250 mg, 1.10 mmol) is combined with N,N-diisopropylethylamine (DIEA) (421 mu, 2.41 mmol) in DCM (10.0 mL) at room temperature, then treated with acetyl chloride (AcCl) (85.9 mu, 1.21 mmol). The resulting mixture is stirred for 1 h, then partitioned between H20 and EtOAc and the phases are separated. The organic phase is washed with IN HCl, saturated aqueous NaHC03, and brine, then dried over Na2S04, filtered, and concentrated to afford 6-18 (258 mg).

As the rapid development of chemical substances, we look forward to future research findings about 877861-62-6

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; BRENNEMAN, Jehrod Burnett; HUBER, John D.; RAUDENBUSH, Brian Christopher; SARKO, Christopher Ronald; WO2012/122340; (2012); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Some tips on 22990-19-8

With the complex challenges of chemical substances, we look forward to future research findings about 22990-19-8,belong tetrahydroisoquinoline compound

As a common heterocyclic compound, it belongs to tetrahydroisoquinoline compound, name is 1-Phenyl-1,2,3,4-tetrahydroisoquinoline, and cas is 22990-19-8, its synthesis route is as follows.,22990-19-8

(1 R)-1 -phenyl-1 ,2,3,4-tetrahydroisoquinoline (25 g) recovered from the filtrate of the resolution step, potassium hydroxide (15.5 g), water (12.5 mL), and dimethyl sulfoxide (50 mL) were placed into a clean and dry round bottom flask and stirred for 5 minutes. The reaction mixture was heated to reflux and maintained for 11 hours, 45 minutes. The reaction mass was cooled to 28C and chilled water (375 ml) was added to the reaction mixture and stirred for 35 minutes. The separated solid was then filtered, washed with water (25 mL) and dried at about 55C to afford 13 g of the title compound.

With the complex challenges of chemical substances, we look forward to future research findings about 22990-19-8,belong tetrahydroisoquinoline compound

Reference£º
Patent; DR. REDDY’S LABORATORIES LTD.; DR. REDDY’S LABORATORIES, INC.; WO2008/128028; (2008); A2;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

The important role of 99365-69-2

With the complex challenges of chemical substances, we look forward to future research findings about 7-Nitro-1,2,3,4-tetrahydroisoquinoline hydrochloride

Name is 7-Nitro-1,2,3,4-tetrahydroisoquinoline hydrochloride, as a common heterocyclic compound, it belongs to tetrahydroisoquinoline compound, and cas is 99365-69-2, its synthesis route is as follows.,99365-69-2

Into a 20 mL vial was charged 7-nitro-l,2,3,4-tetrahydroisoquinoline, hydrochloric acid salt (0.300 g, 1.398 mmol), methoxyacetyl chloride (0.141 ml, 1.537 mmol), triethylamine (0.429 ml, 3.07 mmol), and dichloromethane (6.99 ml). The reaction was stirred at room temperature for 2 hours. The reaction was diluted with dichloromethane, washed with IN HC1, saturated aqueous sodium bicarbonate, and brine. The organic layer was dried over MgS04, filtered and concentrated to provide the title compound. MS (DCI(+)) m/e 251 (M+H)+.

With the complex challenges of chemical substances, we look forward to future research findings about 7-Nitro-1,2,3,4-tetrahydroisoquinoline hydrochloride

Reference£º
Patent; ABBOTT LABORATORIES; BA-MAUNG, Nwe Y.; CLARK, Richard F.; ERICKSON, Scott A.; FIDANZE, Steve D.; KAWAI, Megumi; MANTEI, Robert A.; SHEPPARD, George S.; SORENSON, Bryan K.; WANG, Gary T.; WO2011/53476; (2011); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Analyzing the synthesis route of 215798-19-9

With the synthetic route has been constantly updated, we look forward to future research findings about 6-Bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride,belong tetrahydroisoquinoline compound

As a common heterocyclic compound, it belong tetrahydroisoquinoline compound,6-Bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride,215798-19-9,Molecular formula: C9H11BrClN,mainly used in chemical industry, its synthesis route is as follows.,215798-19-9

Step A: Preparation of 2-(6-Bromo-3,4-dihydroisoquinolin-2(lH)-yl)-2-oxoethyl Acetate. To a solution of 6-bromo-l,2,3,4-tetrahydroisoquinoline hydrochloride (0.400 g, 1.609 mmol) and triethylamine (1.122 mL, 8.05 mmol) in DCM (10 mL)was added 2-chloro-2- oxoethyl acetate (0.242 g, 1.770 mmol). The reaction was stirred at room temperature for 30 min. The mixture was diluted with DCM, washed with 1 M HCl, brine, dried over Na2SO4, and concentrated to give the title compound without further purification

With the synthetic route has been constantly updated, we look forward to future research findings about 6-Bromo-1,2,3,4-tetrahydroisoquinoline hydrochloride,belong tetrahydroisoquinoline compound

Reference£º
Patent; ARENA PHARMACEUTICALS, INC.; WO2009/105206; (2009); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

Simple exploration of 877861-62-6

The synthetic route of 877861-62-6 has been constantly updated, and we look forward to future research findings.

877861-62-6, Methyl 1,2,3,4-tetrahydroisoquinoline-6-carboxylate hydrochloride is a tetrahydroisoquinoline compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,877861-62-6

Example 2methyl 2-(4-bromobenzyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylate Intermediate-2; To a solution of methyl 1,2,3,4-tetrahydroisoquinoline-6-carboxylate hydrochloride (500.0 mg, 2.00 mmol) in DMF (17.0 mL) was added 4-bromobenzylbromide (604 mg, 2.42 mmol) and K2CO3 (910 mg, 6.59 mmol). The resulting mixture was stirred overnight at rt. EtOAc and water were added, and the phases were separated. The organic phase was dried over Na2SO4, filtered and concentrated. The resulting residue was purified by column chromatography (SiO2, 0-40% EtOAc in hexane) to give methyl 2-(4-bromobenzyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylate (753 mg, 100%). LC-MS: (FA) ES+ 361; 1H NMR (300 MHz, CDCl3) delta 7.86-7.70 (m, 2H), 7.46 (dd, J=8.7, 2.1 Hz, 2H), 7.36-7.21 (m, 2H), 7.04 (d, J=8.0 Hz, 1H), 3.89 (d, J=3.8 Hz, 3H), 3.64 (s, 4H), 2.93 (t, J=5.8 Hz, 2H), 2.83-2.64 (m, 2H).

The synthetic route of 877861-62-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Millennium Pharmaceuticals, Inc.; US2012/165316; (2012); A1;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem

New learning discoveries about 57060-88-5

With the rapid development of chemical substances, we look forward to future research findings about Methyl 1,2,3,4-tetrahydroisoquinoline-3-carboxylate hydrochloride

57060-88-5,Methyl 1,2,3,4-tetrahydroisoquinoline-3-carboxylate hydrochloride, cas is 57060-88-5, it is a common heterocyclic compound, the tetrahydroisoquinoline compound, its synthesis route is as follows.

To a solution of Boc-Dmt-OH (309 mg, 1 mmol), HBTU (379 mg, 1 mmol) and DIEA (348 muL, 2 mmol) in 5 mL DMF was added a solution of HCl x H-Tic-OMe (227.5 mg, 1 mmol) and DIEA (174 muL, 1 mmol) in 5 mL DMF. The reaction mixture was stirred for 5 h at room temperature and progress of the reaction was monitored by TLC. After solvent evaporation in vacuo, the residue was dissolved in 50 mL AcOEt and the resulting solution was washed with 5% KHSO4 (aq.), saturated NaHCO3 (aq.) and brine. The organic phase was dried (MgSO4), filtered and evaporated to dryness, yielding 430 mg of crude product (90% yield). The crude Boc-protected dipeptide ester was deprotected by treatment with aqueous TFA (95% vv) for 45 min under stirring and cooling with ice. After TFA evaporation in vacuo, the TFA salt of the dipeptide ester was precipitated with ether (Et2O), affording 300 mg (90% yield) of crude product which was purified by preparative HPLC. TFA x H-Dmt-Tic-OMe: TLC Rf (I) 0.55; MS [M+H]+ 383.

With the rapid development of chemical substances, we look forward to future research findings about Methyl 1,2,3,4-tetrahydroisoquinoline-3-carboxylate hydrochloride

Reference£º
Article; Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wilkes, Brian C.; Schiller, Peter W.; Bioorganic and Medicinal Chemistry Letters; vol. 23; 18; (2013); p. 5082 – 5085;,
Tetrahydroisoquinoline – Wikipedia
1,2,3,4-Tetrahydroisoquinoline | C9H11N – PubChem